Metamath Proof Explorer


Theorem sseqtri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995)

Ref Expression
Hypotheses sseqtr.1 𝐴𝐵
sseqtr.2 𝐵 = 𝐶
Assertion sseqtri 𝐴𝐶

Proof

Step Hyp Ref Expression
1 sseqtr.1 𝐴𝐵
2 sseqtr.2 𝐵 = 𝐶
3 2 sseq2i ( 𝐴𝐵𝐴𝐶 )
4 1 3 mpbi 𝐴𝐶