Metamath Proof Explorer


Theorem sseqtrrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrrd.1 ( 𝜑𝐴𝐵 )
sseqtrrd.2 ( 𝜑𝐶 = 𝐵 )
Assertion sseqtrrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sseqtrrd.1 ( 𝜑𝐴𝐵 )
2 sseqtrrd.2 ( 𝜑𝐶 = 𝐵 )
3 2 eqcomd ( 𝜑𝐵 = 𝐶 )
4 1 3 sseqtrd ( 𝜑𝐴𝐶 )