Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseqtrrdi.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 | ||
Assertion | sseqtrrdi | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrdi.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
2 | sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi | ⊢ 𝐵 = 𝐶 |
4 | 1 3 | sseqtrdi | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |