Metamath Proof Explorer


Theorem sseqtrrdi

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrrdi.1 ( 𝜑𝐴𝐵 )
sseqtrrdi.2 𝐶 = 𝐵
Assertion sseqtrrdi ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sseqtrrdi.1 ( 𝜑𝐴𝐵 )
2 sseqtrrdi.2 𝐶 = 𝐵
3 2 eqcomi 𝐵 = 𝐶
4 1 3 sseqtrdi ( 𝜑𝐴𝐶 )