Metamath Proof Explorer
Description: A subclass of a set is a set. Deduction form of ssexg . (Contributed by David Moews, 1-May-2017)
|
|
Ref |
Expression |
|
Hypotheses |
ssexd.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
|
|
ssexd.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
Assertion |
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssexd.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
2 |
|
ssexd.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
3 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) |
4 |
2 1 3
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |