Metamath Proof Explorer


Theorem ssexd

Description: A subclass of a set is a set. Deduction form of ssexg . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssexd.1 ( 𝜑𝐵𝐶 )
ssexd.2 ( 𝜑𝐴𝐵 )
Assertion ssexd ( 𝜑𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 ssexd.1 ( 𝜑𝐵𝐶 )
2 ssexd.2 ( 𝜑𝐴𝐵 )
3 ssexg ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴 ∈ V )
4 2 1 3 syl2anc ( 𝜑𝐴 ∈ V )