Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ssext | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssextss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) | |
2 | ssextss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) | |
3 | 1 2 | anbi12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) ) |
4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
5 | albiim | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) ) | |
6 | 3 4 5 | 3bitr4i | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) |