Metamath Proof Explorer


Theorem ssext

Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004)

Ref Expression
Assertion ssext ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssextss ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 ssextss ( 𝐵𝐴 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥𝐴 ) )
3 1 2 anbi12i ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝑥𝐴 ) ) )
4 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
5 albiim ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝑥𝐴 ) ) )
6 3 4 5 3bitr4i ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )