Metamath Proof Explorer


Theorem ssextss

Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004)

Ref Expression
Assertion ssextss ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 sspwb ( 𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
2 dfss2 ( 𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵 ) )
3 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
4 velpw ( 𝑥 ∈ 𝒫 𝐵𝑥𝐵 )
5 3 4 imbi12i ( ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
6 5 albii ( ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
7 1 2 6 3bitri ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )