Metamath Proof Explorer


Theorem ssfg

Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion ssfg ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) )

Proof

Step Hyp Ref Expression
1 fbelss ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑡𝐹 ) → 𝑡𝑋 )
2 1 ex ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡𝐹𝑡𝑋 ) )
3 ssid 𝑡𝑡
4 sseq1 ( 𝑥 = 𝑡 → ( 𝑥𝑡𝑡𝑡 ) )
5 4 rspcev ( ( 𝑡𝐹𝑡𝑡 ) → ∃ 𝑥𝐹 𝑥𝑡 )
6 3 5 mpan2 ( 𝑡𝐹 → ∃ 𝑥𝐹 𝑥𝑡 )
7 2 6 jca2 ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡𝐹 → ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) ) )
8 elfg ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐹 𝑥𝑡 ) ) )
9 7 8 sylibrd ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡𝐹𝑡 ∈ ( 𝑋 filGen 𝐹 ) ) )
10 9 ssrdv ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) )