Step |
Hyp |
Ref |
Expression |
1 |
|
fbelss |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑡 ∈ 𝐹 ) → 𝑡 ⊆ 𝑋 ) |
2 |
1
|
ex |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ 𝐹 → 𝑡 ⊆ 𝑋 ) ) |
3 |
|
ssid |
⊢ 𝑡 ⊆ 𝑡 |
4 |
|
sseq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡 ) ) |
5 |
4
|
rspcev |
⊢ ( ( 𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) |
6 |
3 5
|
mpan2 |
⊢ ( 𝑡 ∈ 𝐹 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) |
7 |
2 6
|
jca2 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ 𝐹 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
8 |
|
elfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
9 |
7 8
|
sylibrd |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ 𝐹 → 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
10 |
9
|
ssrdv |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |