| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fbelss | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑡  ∈  𝐹 )  →  𝑡  ⊆  𝑋 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ex | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑡  ∈  𝐹  →  𝑡  ⊆  𝑋 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ssid | 
							⊢ 𝑡  ⊆  𝑡  | 
						
						
							| 4 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  𝑡  →  ( 𝑥  ⊆  𝑡  ↔  𝑡  ⊆  𝑡 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rspcev | 
							⊢ ( ( 𝑡  ∈  𝐹  ∧  𝑡  ⊆  𝑡 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							mpan2 | 
							⊢ ( 𝑡  ∈  𝐹  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							jca2 | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑡  ∈  𝐹  →  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							elfg | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑡  ∈  ( 𝑋 filGen 𝐹 )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylibrd | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑡  ∈  𝐹  →  𝑡  ∈  ( 𝑋 filGen 𝐹 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ssrdv | 
							⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  𝐹  ⊆  ( 𝑋 filGen 𝐹 ) )  |