| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐵 ∈ V ) |
| 2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 3 |
|
sseq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
| 5 |
3 4
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ↔ ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ Fin → ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ↔ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) ) |
| 7 |
|
sseq2 |
⊢ ( 𝑥 = ∅ → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ ∅ ) ) |
| 8 |
7
|
imbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) ) ) |
| 9 |
8
|
albidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) ) ) |
| 10 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝑦 ) ) |
| 11 |
10
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ) ) |
| 12 |
11
|
albidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ) ) |
| 13 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 14 |
13
|
imbi1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
| 15 |
14
|
albidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
| 16 |
|
sseq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝐴 ) ) |
| 17 |
16
|
imbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ) |
| 18 |
17
|
albidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ) |
| 19 |
|
ss0 |
⊢ ( 𝑏 ⊆ ∅ → 𝑏 = ∅ ) |
| 20 |
|
0fi |
⊢ ∅ ∈ Fin |
| 21 |
19 20
|
eqeltrdi |
⊢ ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) |
| 22 |
21
|
ax-gen |
⊢ ∀ 𝑏 ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) |
| 23 |
|
sseq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ⊆ 𝑦 ↔ 𝑐 ⊆ 𝑦 ) ) |
| 24 |
|
eleq1w |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ∈ Fin ↔ 𝑐 ∈ Fin ) ) |
| 25 |
23 24
|
imbi12d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ↔ ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) ) |
| 26 |
25
|
cbvalvw |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ↔ ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) |
| 27 |
|
simp1 |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) |
| 28 |
|
snssi |
⊢ ( 𝑧 ∈ 𝑏 → { 𝑧 } ⊆ 𝑏 ) |
| 29 |
|
undif |
⊢ ( { 𝑧 } ⊆ 𝑏 ↔ ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = 𝑏 ) |
| 30 |
28 29
|
sylib |
⊢ ( 𝑧 ∈ 𝑏 → ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = 𝑏 ) |
| 31 |
|
uncom |
⊢ ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) |
| 32 |
30 31
|
eqtr3di |
⊢ ( 𝑧 ∈ 𝑏 → 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
| 33 |
|
uncom |
⊢ ( 𝑦 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝑦 ) |
| 34 |
33
|
sseq2i |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) |
| 35 |
|
ssundif |
⊢ ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
| 36 |
34 35
|
sylbb |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
| 37 |
32 36
|
anim12ci |
⊢ ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
| 38 |
37
|
3adant1 |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
| 39 |
|
3anass |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ↔ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) ) |
| 40 |
27 38 39
|
sylanbrc |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
| 41 |
|
vex |
⊢ 𝑏 ∈ V |
| 42 |
41
|
difexi |
⊢ ( 𝑏 ∖ { 𝑧 } ) ∈ V |
| 43 |
|
sseq1 |
⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( 𝑐 ⊆ 𝑦 ↔ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) ) |
| 44 |
|
eleq1 |
⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( 𝑐 ∈ Fin ↔ ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) |
| 45 |
43 44
|
imbi12d |
⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ↔ ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) ) |
| 46 |
42 45
|
spcv |
⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) |
| 47 |
46
|
imp |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) |
| 48 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 49 |
|
unfi |
⊢ ( ( ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) |
| 50 |
47 48 49
|
sylancl |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) → ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) |
| 51 |
|
eleq1 |
⊢ ( 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) → ( 𝑏 ∈ Fin ↔ ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) ) |
| 52 |
51
|
biimparc |
⊢ ( ( ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
| 53 |
50 52
|
stoic3 |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
| 54 |
40 53
|
syl |
⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
| 55 |
54
|
3expib |
⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 56 |
55
|
alrimiv |
⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 57 |
26 56
|
sylbi |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 58 |
|
disjsn |
⊢ ( ( 𝑏 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑏 ) |
| 59 |
|
disjssun |
⊢ ( ( 𝑏 ∩ { 𝑧 } ) = ∅ → ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ 𝑏 ⊆ 𝑦 ) ) |
| 60 |
58 59
|
sylbir |
⊢ ( ¬ 𝑧 ∈ 𝑏 → ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ 𝑏 ⊆ 𝑦 ) ) |
| 61 |
60
|
biimpa |
⊢ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) → 𝑏 ⊆ 𝑦 ) |
| 62 |
34 61
|
sylan2b |
⊢ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ⊆ 𝑦 ) |
| 63 |
62
|
imim1i |
⊢ ( ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 64 |
63
|
alimi |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 65 |
|
exmid |
⊢ ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) |
| 66 |
65
|
jctl |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 67 |
|
andir |
⊢ ( ( ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 68 |
66 67
|
sylib |
⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 69 |
|
pm3.44 |
⊢ ( ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑏 ∈ Fin ) ) |
| 70 |
68 69
|
syl5 |
⊢ ( ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
| 71 |
70
|
alanimi |
⊢ ( ( ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ∀ 𝑏 ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
| 72 |
57 64 71
|
syl2anc |
⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
| 73 |
72
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
| 74 |
9 12 15 18 22 73
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑏 ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) |
| 75 |
74
|
19.21bi |
⊢ ( 𝐴 ∈ Fin → ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) |
| 76 |
6 75
|
vtoclg |
⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
| 77 |
76
|
impd |
⊢ ( 𝐵 ∈ V → ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) ) |
| 78 |
2 77
|
mpcom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |