Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
2 |
|
bren |
⊢ ( 𝐴 ≈ 𝑥 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝑥 ) |
3 |
|
f1ofo |
⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → 𝑧 : 𝐴 –onto→ 𝑥 ) |
4 |
|
imassrn |
⊢ ( 𝑧 “ 𝐵 ) ⊆ ran 𝑧 |
5 |
|
forn |
⊢ ( 𝑧 : 𝐴 –onto→ 𝑥 → ran 𝑧 = 𝑥 ) |
6 |
4 5
|
sseqtrid |
⊢ ( 𝑧 : 𝐴 –onto→ 𝑥 → ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) |
7 |
3 6
|
syl |
⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) |
8 |
|
ssnnfi |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) → ( 𝑧 “ 𝐵 ) ∈ Fin ) |
9 |
|
isfi |
⊢ ( ( 𝑧 “ 𝐵 ) ∈ Fin ↔ ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) → ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) |
11 |
7 10
|
sylan2 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑧 : 𝐴 –1-1-onto→ 𝑥 ) → ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) |
12 |
11
|
adantrr |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ) → ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) |
13 |
|
f1of1 |
⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → 𝑧 : 𝐴 –1-1→ 𝑥 ) |
14 |
|
f1ores |
⊢ ( ( 𝑧 : 𝐴 –1-1→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) |
15 |
13 14
|
sylan |
⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) |
16 |
|
vex |
⊢ 𝑧 ∈ V |
17 |
16
|
resex |
⊢ ( 𝑧 ↾ 𝐵 ) ∈ V |
18 |
|
f1oeq1 |
⊢ ( 𝑥 = ( 𝑧 ↾ 𝐵 ) → ( 𝑥 : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ↔ ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) ) |
19 |
17 18
|
spcev |
⊢ ( ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) → ∃ 𝑥 𝑥 : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) |
20 |
|
bren |
⊢ ( 𝐵 ≈ ( 𝑧 “ 𝐵 ) ↔ ∃ 𝑥 𝑥 : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) |
21 |
19 20
|
sylibr |
⊢ ( ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) → 𝐵 ≈ ( 𝑧 “ 𝐵 ) ) |
22 |
|
entr |
⊢ ( ( 𝐵 ≈ ( 𝑧 “ 𝐵 ) ∧ ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) → 𝐵 ≈ 𝑦 ) |
23 |
21 22
|
sylan |
⊢ ( ( ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ∧ ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) → 𝐵 ≈ 𝑦 ) |
24 |
15 23
|
sylan |
⊢ ( ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) → 𝐵 ≈ 𝑦 ) |
25 |
24
|
ex |
⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑧 “ 𝐵 ) ≈ 𝑦 → 𝐵 ≈ 𝑦 ) ) |
26 |
25
|
reximdv |
⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 → ∃ 𝑦 ∈ ω 𝐵 ≈ 𝑦 ) ) |
27 |
|
isfi |
⊢ ( 𝐵 ∈ Fin ↔ ∃ 𝑦 ∈ ω 𝐵 ≈ 𝑦 ) |
28 |
26 27
|
syl6ibr |
⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 → 𝐵 ∈ Fin ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ) → ( ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 → 𝐵 ∈ Fin ) ) |
30 |
12 29
|
mpd |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ Fin ) |
31 |
30
|
exp32 |
⊢ ( 𝑥 ∈ ω → ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
32 |
31
|
exlimdv |
⊢ ( 𝑥 ∈ ω → ( ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
33 |
2 32
|
syl5bi |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
34 |
33
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) |
35 |
1 34
|
sylbi |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) |
36 |
35
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |