Metamath Proof Explorer
Description: A subset of a finite set is finite, deduction version of ssfi .
(Contributed by Glauco Siliprandi, 21-Nov-2020)
|
|
Ref |
Expression |
|
Hypotheses |
ssfid.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
ssfid.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
|
Assertion |
ssfid |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssfid.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
ssfid.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
3 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |