Metamath Proof Explorer


Theorem ssfid

Description: A subset of a finite set is finite, deduction version of ssfi . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses ssfid.1 ( 𝜑𝐴 ∈ Fin )
ssfid.2 ( 𝜑𝐵𝐴 )
Assertion ssfid ( 𝜑𝐵 ∈ Fin )

Proof

Step Hyp Ref Expression
1 ssfid.1 ( 𝜑𝐴 ∈ Fin )
2 ssfid.2 ( 𝜑𝐵𝐴 )
3 ssfi ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐵 ∈ Fin )
4 1 2 3 syl2anc ( 𝜑𝐵 ∈ Fin )