Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
1
|
intsn |
⊢ ∩ { 𝑥 } = 𝑥 |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
5 |
4
|
snssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ⊆ 𝐴 ) |
6 |
1
|
snnz |
⊢ { 𝑥 } ≠ ∅ |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ≠ ∅ ) |
8 |
|
snfi |
⊢ { 𝑥 } ∈ Fin |
9 |
8
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ∈ Fin ) |
10 |
|
elfir |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( { 𝑥 } ⊆ 𝐴 ∧ { 𝑥 } ≠ ∅ ∧ { 𝑥 } ∈ Fin ) ) → ∩ { 𝑥 } ∈ ( fi ‘ 𝐴 ) ) |
11 |
3 5 7 9 10
|
syl13anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → ∩ { 𝑥 } ∈ ( fi ‘ 𝐴 ) ) |
12 |
2 11
|
eqeltrrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( fi ‘ 𝐴 ) ) |
13 |
12
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( fi ‘ 𝐴 ) ) ) |
14 |
13
|
ssrdv |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |