Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝐴 ∈ FinII ) |
2 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝑥 ⊆ 𝒫 𝐵 ) |
4 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
5 |
4
|
sspwd |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝒫 𝐵 ⊆ 𝒫 𝐴 ) |
6 |
3 5
|
sstrd |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
7 |
|
fin2i |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴 ) ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) → ∪ 𝑥 ∈ 𝑥 ) |
8 |
7
|
ex |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝒫 𝐴 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
9 |
1 6 8
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
10 |
9
|
ralrimiva |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
11 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinII ) → 𝐵 ∈ V ) |
12 |
11
|
ancoms |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
13 |
|
isfin2 |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
15 |
10 14
|
mpbird |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ FinII ) |