Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐴 ∈ FinIV ) |
2 |
|
pssss |
⊢ ( 𝑥 ⊊ 𝐵 → 𝑥 ⊆ 𝐵 ) |
3 |
|
simpr |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
4 |
2 3
|
sylan9ssr |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → 𝑥 ⊆ 𝐴 ) |
5 |
|
difssd |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) |
6 |
4 5
|
unssd |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ 𝐴 ) |
7 |
|
pssnel |
⊢ ( 𝑥 ⊊ 𝐵 → ∃ 𝑐 ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ∃ 𝑐 ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) |
9 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → 𝐵 ⊆ 𝐴 ) |
10 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → 𝑐 ∈ 𝐵 ) |
11 |
9 10
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → 𝑐 ∈ 𝐴 ) |
12 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝑐 ∈ 𝑥 ) |
13 |
|
elndif |
⊢ ( 𝑐 ∈ 𝐵 → ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) |
14 |
13
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) |
15 |
|
ioran |
⊢ ( ¬ ( 𝑐 ∈ 𝑥 ∨ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ¬ 𝑐 ∈ 𝑥 ∧ ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
16 |
|
elun |
⊢ ( 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑐 ∈ 𝑥 ∨ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
17 |
15 16
|
xchnxbir |
⊢ ( ¬ 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ¬ 𝑐 ∈ 𝑥 ∧ ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
18 |
12 14 17
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
19 |
|
nelneq2 |
⊢ ( ( 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝐴 = ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
20 |
11 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝐴 = ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
21 |
|
eqcom |
⊢ ( 𝐴 = ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
22 |
20 21
|
sylnib |
⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
23 |
8 22
|
exlimddv |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ¬ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
24 |
|
dfpss2 |
⊢ ( ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ↔ ( ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ 𝐴 ∧ ¬ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) ) |
25 |
6 23 24
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ) |
26 |
25
|
adantrr |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ) |
27 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝑥 ≈ 𝐵 ) |
28 |
|
difexg |
⊢ ( 𝐴 ∈ FinIV → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
29 |
|
enrefg |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ V → ( 𝐴 ∖ 𝐵 ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
30 |
1 28 29
|
3syl |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝐴 ∖ 𝐵 ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
31 |
2
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝑥 ⊆ 𝐵 ) |
32 |
|
ssinss1 |
⊢ ( 𝑥 ⊆ 𝐵 → ( 𝑥 ∩ 𝐴 ) ⊆ 𝐵 ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ 𝐵 ) |
34 |
|
inssdif0 |
⊢ ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝐵 ↔ ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
35 |
33 34
|
sylib |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
36 |
|
disjdif |
⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
37 |
35 36
|
jctir |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) ) |
38 |
|
unen |
⊢ ( ( ( 𝑥 ≈ 𝐵 ∧ ( 𝐴 ∖ 𝐵 ) ≈ ( 𝐴 ∖ 𝐵 ) ) ∧ ( ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
39 |
27 30 37 38
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
40 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐵 ⊆ 𝐴 ) |
41 |
|
undif |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
42 |
40 41
|
sylib |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
43 |
39 42
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ 𝐴 ) |
44 |
|
fin4i |
⊢ ( ( ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ∧ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ 𝐴 ) → ¬ 𝐴 ∈ FinIV ) |
45 |
26 43 44
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ¬ 𝐴 ∈ FinIV ) |
46 |
1 45
|
pm2.65da |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → ¬ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) |
47 |
46
|
nexdv |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) |
48 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinIV ) → 𝐵 ∈ V ) |
49 |
48
|
ancoms |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
50 |
|
isfin4 |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
51 |
49 50
|
syl |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
52 |
47 51
|
mpbird |
⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ FinIV ) |