Step |
Hyp |
Ref |
Expression |
1 |
|
ssfiunibd.fi |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
ssfiunibd.b |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
ssfiunibd.bd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) |
4 |
|
ssfiunibd.ssun |
⊢ ( 𝜑 → 𝐶 ⊆ ∪ 𝐴 ) |
5 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) → 𝜑 ) |
6 |
|
19.8a |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ∃ 𝑥 ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) |
8 |
|
eluni |
⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) |
9 |
7 8
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ ∪ 𝐴 ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ ∪ 𝐴 ) |
11 |
5 10 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
12 |
|
eqid |
⊢ if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) |
13 |
11 3 12
|
upbdrech2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ) ) |
14 |
13
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) |
15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) |
16 |
|
fimaxre3 |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) → ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) |
17 |
1 15 16
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) |
18 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑤 ∈ ℝ ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
20 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 = ∅ |
21 |
|
nfcv |
⊢ Ⅎ 𝑧 0 |
22 |
|
nfre1 |
⊢ Ⅎ 𝑧 ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 |
23 |
22
|
nfab |
⊢ Ⅎ 𝑧 { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } |
24 |
|
nfcv |
⊢ Ⅎ 𝑧 ℝ |
25 |
|
nfcv |
⊢ Ⅎ 𝑧 < |
26 |
23 24 25
|
nfsup |
⊢ Ⅎ 𝑧 sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) |
27 |
20 21 26
|
nfif |
⊢ Ⅎ 𝑧 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑧 ≤ |
29 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑤 |
30 |
27 28 29
|
nfbr |
⊢ Ⅎ 𝑧 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 |
31 |
19 30
|
nfralw |
⊢ Ⅎ 𝑧 ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 |
32 |
18 31
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) |
33 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ∪ 𝐴 ) |
34 |
33 8
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) |
35 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) |
36 |
34 35
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) |
37 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 ) |
39 |
38
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 ) |
40 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑤 ∈ ℝ ) |
41 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 |
42 |
40 41
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) |
43 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐶 |
44 |
42 43
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧 ∈ 𝐶 ) |
45 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 ≤ 𝑤 |
46 |
11
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
47 |
46
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
48 |
47
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
49 |
|
n0i |
⊢ ( 𝑧 ∈ 𝑥 → ¬ 𝑥 = ∅ ) |
50 |
49
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ¬ 𝑥 = ∅ ) |
51 |
50
|
iffalsed |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) = sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) |
52 |
51
|
eqcomd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ) |
53 |
52
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ) |
54 |
14
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) |
55 |
53 54
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
56 |
55
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
57 |
56
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
58 |
|
simp1lr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑤 ∈ ℝ ) |
59 |
|
nfv |
⊢ Ⅎ 𝑢 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
60 |
|
nfab1 |
⊢ Ⅎ 𝑢 { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } |
61 |
|
nfcv |
⊢ Ⅎ 𝑢 ℝ |
62 |
|
abid |
⊢ ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ↔ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 ) |
63 |
62
|
biimpi |
⊢ ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } → ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 ) |
65 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
66 |
22
|
nfsab |
⊢ Ⅎ 𝑧 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } |
67 |
65 66
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) |
68 |
|
nfv |
⊢ Ⅎ 𝑧 𝑢 ∈ ℝ |
69 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ∧ 𝑢 = 𝐵 ) → 𝑢 = 𝐵 ) |
70 |
11
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ∧ 𝑢 = 𝐵 ) → 𝐵 ∈ ℝ ) |
71 |
69 70
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ∧ 𝑢 = 𝐵 ) → 𝑢 ∈ ℝ ) |
72 |
71
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 ∈ 𝑥 → ( 𝑢 = 𝐵 → 𝑢 ∈ ℝ ) ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → ( 𝑧 ∈ 𝑥 → ( 𝑢 = 𝐵 → 𝑢 ∈ ℝ ) ) ) |
74 |
67 68 73
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → ( ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 → 𝑢 ∈ ℝ ) ) |
75 |
64 74
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → 𝑢 ∈ ℝ ) |
76 |
75
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } → 𝑢 ∈ ℝ ) ) |
77 |
59 60 61 76
|
ssrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ⊆ ℝ ) |
78 |
77
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ⊆ ℝ ) |
79 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) |
80 |
|
elabrexg |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) |
81 |
79 46 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) |
82 |
81
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ≠ ∅ ) |
83 |
|
abid |
⊢ ( 𝑣 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 } ↔ ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 ) |
84 |
83
|
biimpi |
⊢ ( 𝑣 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 } → ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 ) |
85 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 = 𝐵 ↔ 𝑣 = 𝐵 ) ) |
86 |
85
|
rexbidv |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 ↔ ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 ) ) |
87 |
86
|
cbvabv |
⊢ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 } |
88 |
84 87
|
eleq2s |
⊢ ( 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } → ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 ) |
89 |
88
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 ) |
90 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 |
91 |
65 90
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) |
92 |
22
|
nfsab |
⊢ Ⅎ 𝑧 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } |
93 |
91 92
|
nfan |
⊢ Ⅎ 𝑧 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) |
94 |
|
nfv |
⊢ Ⅎ 𝑧 𝑣 ≤ 𝑦 |
95 |
|
simp3 |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥 ∧ 𝑣 = 𝐵 ) → 𝑣 = 𝐵 ) |
96 |
|
rspa |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ≤ 𝑦 ) |
97 |
96
|
3adant3 |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥 ∧ 𝑣 = 𝐵 ) → 𝐵 ≤ 𝑦 ) |
98 |
95 97
|
eqbrtrd |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥 ∧ 𝑣 = 𝐵 ) → 𝑣 ≤ 𝑦 ) |
99 |
98
|
3exp |
⊢ ( ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 → ( 𝑧 ∈ 𝑥 → ( 𝑣 = 𝐵 → 𝑣 ≤ 𝑦 ) ) ) |
100 |
99
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) → ( 𝑧 ∈ 𝑥 → ( 𝑣 = 𝐵 → 𝑣 ≤ 𝑦 ) ) ) |
101 |
100
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → ( 𝑧 ∈ 𝑥 → ( 𝑣 = 𝐵 → 𝑣 ≤ 𝑦 ) ) ) |
102 |
93 94 101
|
rexlimd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → ( ∃ 𝑧 ∈ 𝑥 𝑣 = 𝐵 → 𝑣 ≤ 𝑦 ) ) |
103 |
89 102
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → 𝑣 ≤ 𝑦 ) |
104 |
103
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 ) → ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } 𝑣 ≤ 𝑦 ) |
105 |
104
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 → ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } 𝑣 ≤ 𝑦 ) ) |
106 |
105
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } 𝑣 ≤ 𝑦 ) ) |
107 |
3 106
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } 𝑣 ≤ 𝑦 ) |
108 |
107
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } 𝑣 ≤ 𝑦 ) |
109 |
|
suprub |
⊢ ( ( ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ⊆ ℝ ∧ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } 𝑣 ≤ 𝑦 ) ∧ 𝐵 ∈ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) |
110 |
78 82 108 81 109
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) |
111 |
110
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) |
112 |
111
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) |
113 |
52
|
3adant1 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ) |
114 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) |
115 |
114
|
3adant3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) |
116 |
113 115
|
eqbrtrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ≤ 𝑤 ) |
117 |
116
|
3adant1l |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ≤ 𝑤 ) |
118 |
48 57 58 112 117
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝐵 ≤ 𝑤 ) |
119 |
118
|
3exp |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) → ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝑥 → 𝐵 ≤ 𝑤 ) ) ) |
120 |
119
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝑥 → 𝐵 ≤ 𝑤 ) ) ) |
121 |
44 45 120
|
rexlimd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧 ∈ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 → 𝐵 ≤ 𝑤 ) ) |
122 |
39 121
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧 ∈ 𝐶 ) → 𝐵 ≤ 𝑤 ) |
123 |
122
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) → ( 𝑧 ∈ 𝐶 → 𝐵 ≤ 𝑤 ) ) |
124 |
32 123
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) → ∀ 𝑧 ∈ 𝐶 𝐵 ≤ 𝑤 ) |
125 |
124
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 → ∀ 𝑧 ∈ 𝐶 𝐵 ≤ 𝑤 ) ) |
126 |
125
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 → ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐶 𝐵 ≤ 𝑤 ) ) |
127 |
17 126
|
mpd |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐶 𝐵 ≤ 𝑤 ) |