Metamath Proof Explorer


Theorem ssfiunibd

Description: A finite union of bounded sets is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ssfiunibd.fi ( 𝜑𝐴 ∈ Fin )
ssfiunibd.b ( ( 𝜑𝑧 𝐴 ) → 𝐵 ∈ ℝ )
ssfiunibd.bd ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧𝑥 𝐵𝑦 )
ssfiunibd.ssun ( 𝜑𝐶 𝐴 )
Assertion ssfiunibd ( 𝜑 → ∃ 𝑤 ∈ ℝ ∀ 𝑧𝐶 𝐵𝑤 )

Proof

Step Hyp Ref Expression
1 ssfiunibd.fi ( 𝜑𝐴 ∈ Fin )
2 ssfiunibd.b ( ( 𝜑𝑧 𝐴 ) → 𝐵 ∈ ℝ )
3 ssfiunibd.bd ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧𝑥 𝐵𝑦 )
4 ssfiunibd.ssun ( 𝜑𝐶 𝐴 )
5 simpll ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧𝑥 ) → 𝜑 )
6 19.8a ( ( 𝑧𝑥𝑥𝐴 ) → ∃ 𝑥 ( 𝑧𝑥𝑥𝐴 ) )
7 6 ancoms ( ( 𝑥𝐴𝑧𝑥 ) → ∃ 𝑥 ( 𝑧𝑥𝑥𝐴 ) )
8 eluni ( 𝑧 𝐴 ↔ ∃ 𝑥 ( 𝑧𝑥𝑥𝐴 ) )
9 7 8 sylibr ( ( 𝑥𝐴𝑧𝑥 ) → 𝑧 𝐴 )
10 9 adantll ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧𝑥 ) → 𝑧 𝐴 )
11 5 10 2 syl2anc ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧𝑥 ) → 𝐵 ∈ ℝ )
12 eqid if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) )
13 11 3 12 upbdrech2 ( ( 𝜑𝑥𝐴 ) → ( if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ ∧ ∀ 𝑧𝑥 𝐵 ≤ if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ) )
14 13 simpld ( ( 𝜑𝑥𝐴 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ )
15 14 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ )
16 fimaxre3 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ ) → ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 )
17 1 15 16 syl2anc ( 𝜑 → ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 )
18 nfv 𝑧 ( 𝜑𝑤 ∈ ℝ )
19 nfcv 𝑧 𝐴
20 nfv 𝑧 𝑥 = ∅
21 nfcv 𝑧 0
22 nfre1 𝑧𝑧𝑥 𝑢 = 𝐵
23 22 nfab 𝑧 { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 }
24 nfcv 𝑧
25 nfcv 𝑧 <
26 23 24 25 nfsup 𝑧 sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < )
27 20 21 26 nfif 𝑧 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) )
28 nfcv 𝑧
29 nfcv 𝑧 𝑤
30 27 28 29 nfbr 𝑧 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤
31 19 30 nfralw 𝑧𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤
32 18 31 nfan 𝑧 ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 )
33 4 sselda ( ( 𝜑𝑧𝐶 ) → 𝑧 𝐴 )
34 33 8 sylib ( ( 𝜑𝑧𝐶 ) → ∃ 𝑥 ( 𝑧𝑥𝑥𝐴 ) )
35 exancom ( ∃ 𝑥 ( 𝑧𝑥𝑥𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑧𝑥 ) )
36 34 35 sylib ( ( 𝜑𝑧𝐶 ) → ∃ 𝑥 ( 𝑥𝐴𝑧𝑥 ) )
37 df-rex ( ∃ 𝑥𝐴 𝑧𝑥 ↔ ∃ 𝑥 ( 𝑥𝐴𝑧𝑥 ) )
38 36 37 sylibr ( ( 𝜑𝑧𝐶 ) → ∃ 𝑥𝐴 𝑧𝑥 )
39 38 ad4ant14 ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧𝐶 ) → ∃ 𝑥𝐴 𝑧𝑥 )
40 nfv 𝑥 ( 𝜑𝑤 ∈ ℝ )
41 nfra1 𝑥𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤
42 40 41 nfan 𝑥 ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 )
43 nfv 𝑥 𝑧𝐶
44 42 43 nfan 𝑥 ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧𝐶 )
45 nfv 𝑥 𝐵𝑤
46 11 3impa ( ( 𝜑𝑥𝐴𝑧𝑥 ) → 𝐵 ∈ ℝ )
47 46 3adant1r ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴𝑧𝑥 ) → 𝐵 ∈ ℝ )
48 47 3adant1r ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥𝐴𝑧𝑥 ) → 𝐵 ∈ ℝ )
49 n0i ( 𝑧𝑥 → ¬ 𝑥 = ∅ )
50 49 adantl ( ( 𝑥𝐴𝑧𝑥 ) → ¬ 𝑥 = ∅ )
51 50 iffalsed ( ( 𝑥𝐴𝑧𝑥 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) = sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) )
52 51 eqcomd ( ( 𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) )
53 52 3adant1 ( ( 𝜑𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) )
54 14 3adant3 ( ( 𝜑𝑥𝐴𝑧𝑥 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ∈ ℝ )
55 53 54 eqeltrd ( ( 𝜑𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ∈ ℝ )
56 55 3adant1r ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ∈ ℝ )
57 56 3adant1r ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ∈ ℝ )
58 simp1lr ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥𝐴𝑧𝑥 ) → 𝑤 ∈ ℝ )
59 nfv 𝑢 ( 𝜑𝑥𝐴 )
60 nfab1 𝑢 { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 }
61 nfcv 𝑢
62 abid ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ↔ ∃ 𝑧𝑥 𝑢 = 𝐵 )
63 62 biimpi ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } → ∃ 𝑧𝑥 𝑢 = 𝐵 )
64 63 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → ∃ 𝑧𝑥 𝑢 = 𝐵 )
65 nfv 𝑧 ( 𝜑𝑥𝐴 )
66 22 nfsab 𝑧 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 }
67 65 66 nfan 𝑧 ( ( 𝜑𝑥𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } )
68 nfv 𝑧 𝑢 ∈ ℝ
69 simp3 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧𝑥𝑢 = 𝐵 ) → 𝑢 = 𝐵 )
70 11 3adant3 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧𝑥𝑢 = 𝐵 ) → 𝐵 ∈ ℝ )
71 69 70 eqeltrd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧𝑥𝑢 = 𝐵 ) → 𝑢 ∈ ℝ )
72 71 3exp ( ( 𝜑𝑥𝐴 ) → ( 𝑧𝑥 → ( 𝑢 = 𝐵𝑢 ∈ ℝ ) ) )
73 72 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → ( 𝑧𝑥 → ( 𝑢 = 𝐵𝑢 ∈ ℝ ) ) )
74 67 68 73 rexlimd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → ( ∃ 𝑧𝑥 𝑢 = 𝐵𝑢 ∈ ℝ ) )
75 64 74 mpd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → 𝑢 ∈ ℝ )
76 75 ex ( ( 𝜑𝑥𝐴 ) → ( 𝑢 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } → 𝑢 ∈ ℝ ) )
77 59 60 61 76 ssrd ( ( 𝜑𝑥𝐴 ) → { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ⊆ ℝ )
78 77 3adant3 ( ( 𝜑𝑥𝐴𝑧𝑥 ) → { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ⊆ ℝ )
79 simp3 ( ( 𝜑𝑥𝐴𝑧𝑥 ) → 𝑧𝑥 )
80 elabrexg ( ( 𝑧𝑥𝐵 ∈ ℝ ) → 𝐵 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } )
81 79 46 80 syl2anc ( ( 𝜑𝑥𝐴𝑧𝑥 ) → 𝐵 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } )
82 81 ne0d ( ( 𝜑𝑥𝐴𝑧𝑥 ) → { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ≠ ∅ )
83 abid ( 𝑣 ∈ { 𝑣 ∣ ∃ 𝑧𝑥 𝑣 = 𝐵 } ↔ ∃ 𝑧𝑥 𝑣 = 𝐵 )
84 83 biimpi ( 𝑣 ∈ { 𝑣 ∣ ∃ 𝑧𝑥 𝑣 = 𝐵 } → ∃ 𝑧𝑥 𝑣 = 𝐵 )
85 eqeq1 ( 𝑢 = 𝑣 → ( 𝑢 = 𝐵𝑣 = 𝐵 ) )
86 85 rexbidv ( 𝑢 = 𝑣 → ( ∃ 𝑧𝑥 𝑢 = 𝐵 ↔ ∃ 𝑧𝑥 𝑣 = 𝐵 ) )
87 86 cbvabv { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } = { 𝑣 ∣ ∃ 𝑧𝑥 𝑣 = 𝐵 }
88 84 87 eleq2s ( 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } → ∃ 𝑧𝑥 𝑣 = 𝐵 )
89 88 adantl ( ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → ∃ 𝑧𝑥 𝑣 = 𝐵 )
90 nfra1 𝑧𝑧𝑥 𝐵𝑦
91 65 90 nfan 𝑧 ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 )
92 22 nfsab 𝑧 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 }
93 91 92 nfan 𝑧 ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } )
94 nfv 𝑧 𝑣𝑦
95 simp3 ( ( ∀ 𝑧𝑥 𝐵𝑦𝑧𝑥𝑣 = 𝐵 ) → 𝑣 = 𝐵 )
96 rspa ( ( ∀ 𝑧𝑥 𝐵𝑦𝑧𝑥 ) → 𝐵𝑦 )
97 96 3adant3 ( ( ∀ 𝑧𝑥 𝐵𝑦𝑧𝑥𝑣 = 𝐵 ) → 𝐵𝑦 )
98 95 97 eqbrtrd ( ( ∀ 𝑧𝑥 𝐵𝑦𝑧𝑥𝑣 = 𝐵 ) → 𝑣𝑦 )
99 98 3exp ( ∀ 𝑧𝑥 𝐵𝑦 → ( 𝑧𝑥 → ( 𝑣 = 𝐵𝑣𝑦 ) ) )
100 99 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 ) → ( 𝑧𝑥 → ( 𝑣 = 𝐵𝑣𝑦 ) ) )
101 100 adantr ( ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → ( 𝑧𝑥 → ( 𝑣 = 𝐵𝑣𝑦 ) ) )
102 93 94 101 rexlimd ( ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → ( ∃ 𝑧𝑥 𝑣 = 𝐵𝑣𝑦 ) )
103 89 102 mpd ( ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 ) ∧ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → 𝑣𝑦 )
104 103 ralrimiva ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑧𝑥 𝐵𝑦 ) → ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } 𝑣𝑦 )
105 104 ex ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑧𝑥 𝐵𝑦 → ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } 𝑣𝑦 ) )
106 105 reximdv ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧𝑥 𝐵𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } 𝑣𝑦 ) )
107 3 106 mpd ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } 𝑣𝑦 )
108 107 3adant3 ( ( 𝜑𝑥𝐴𝑧𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } 𝑣𝑦 )
109 suprub ( ( ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ⊆ ℝ ∧ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } 𝑣𝑦 ) ∧ 𝐵 ∈ { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) )
110 78 82 108 81 109 syl31anc ( ( 𝜑𝑥𝐴𝑧𝑥 ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) )
111 110 3adant1r ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑥𝐴𝑧𝑥 ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) )
112 111 3adant1r ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥𝐴𝑧𝑥 ) → 𝐵 ≤ sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) )
113 52 3adant1 ( ( ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) = if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) )
114 rspa ( ( ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤𝑥𝐴 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 )
115 114 3adant3 ( ( ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤𝑥𝐴𝑧𝑥 ) → if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 )
116 113 115 eqbrtrd ( ( ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ≤ 𝑤 )
117 116 3adant1l ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥𝐴𝑧𝑥 ) → sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ≤ 𝑤 )
118 48 57 58 112 117 letrd ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑥𝐴𝑧𝑥 ) → 𝐵𝑤 )
119 118 3exp ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) → ( 𝑥𝐴 → ( 𝑧𝑥𝐵𝑤 ) ) )
120 119 adantr ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧𝐶 ) → ( 𝑥𝐴 → ( 𝑧𝑥𝐵𝑤 ) ) )
121 44 45 120 rexlimd ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧𝐶 ) → ( ∃ 𝑥𝐴 𝑧𝑥𝐵𝑤 ) )
122 39 121 mpd ( ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) ∧ 𝑧𝐶 ) → 𝐵𝑤 )
123 122 ex ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) → ( 𝑧𝐶𝐵𝑤 ) )
124 32 123 ralrimi ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 ) → ∀ 𝑧𝐶 𝐵𝑤 )
125 124 ex ( ( 𝜑𝑤 ∈ ℝ ) → ( ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 → ∀ 𝑧𝐶 𝐵𝑤 ) )
126 125 reximdva ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 if ( 𝑥 = ∅ , 0 , sup ( { 𝑢 ∣ ∃ 𝑧𝑥 𝑢 = 𝐵 } , ℝ , < ) ) ≤ 𝑤 → ∃ 𝑤 ∈ ℝ ∀ 𝑧𝐶 𝐵𝑤 ) )
127 17 126 mpd ( 𝜑 → ∃ 𝑤 ∈ ℝ ∀ 𝑧𝐶 𝐵𝑤 )