Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℤ ) |
2 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
4 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
5 |
|
ltnle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
8 |
7
|
biimpar |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → 𝐴 < 𝐵 ) |
9 |
|
ssfzo12 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) ) ) |
10 |
1 2 8 9
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) ) ) |
11 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
12 |
|
0red |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 0 ∈ ℝ ) |
13 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
14 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ 0 ∧ 0 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 0 ∧ 0 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
16 |
15
|
expcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( 𝐵 ≤ 0 → 𝐵 ≤ 𝐴 ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 0 ≤ 𝐴 ) → ( 𝐵 ≤ 0 → 𝐵 ≤ 𝐴 ) ) |
18 |
17
|
con3d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 0 ≤ 𝐴 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) ) |
21 |
20
|
com23 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐵 ≤ 𝐴 → ( 0 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) ) |
22 |
21
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 0 ≤ 𝐴 → ¬ 𝐵 ≤ 0 ) ) |
23 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
24 |
4 23 3
|
3anim123i |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
25 |
24
|
3coml |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
26 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ 𝑁 ∧ 𝑁 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝑁 ∧ 𝑁 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
28 |
27
|
expdimp |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ≤ 𝑁 ) → ( 𝑁 ≤ 𝐴 → 𝐵 ≤ 𝐴 ) ) |
29 |
28
|
con3d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ≤ 𝑁 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ 𝑁 ≤ 𝐴 ) ) |
30 |
29
|
impancom |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 𝐵 ≤ 𝑁 → ¬ 𝑁 ≤ 𝐴 ) ) |
31 |
22 30
|
anim12d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) → ( ¬ 𝐵 ≤ 0 ∧ ¬ 𝑁 ≤ 𝐴 ) ) ) |
32 |
|
ioran |
⊢ ( ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ↔ ( ¬ 𝑁 ≤ 𝐴 ∧ ¬ 𝐵 ≤ 0 ) ) |
33 |
32
|
biancomi |
⊢ ( ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ↔ ( ¬ 𝐵 ≤ 0 ∧ ¬ 𝑁 ≤ 𝐴 ) ) |
34 |
31 33
|
syl6ibr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 𝑁 ) → ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ) |
35 |
10 34
|
syld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → ¬ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ) |
36 |
35
|
con2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) ) ) |
37 |
36
|
impancom |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) ) ) |
38 |
37
|
con4d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → 𝐵 ≤ 𝐴 ) ) |
39 |
38
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ 𝑁 ) → 𝐵 ≤ 𝐴 ) ) ) |