Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ) |
2 |
|
eluzel2 |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
3 |
2
|
3ad2ant3 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
4 |
|
simp2 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
5 |
|
eluzelz |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ℤ ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℤ ) |
7 |
|
ssfzunsnext |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
8 |
1 3 4 6 7
|
syl13anc |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
9 |
|
eluz2 |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) ) |
10 |
|
zre |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) |
11 |
10
|
rexrd |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ* ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝐼 ∈ ℝ* ) |
13 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
14 |
13
|
rexrd |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ∈ ℝ* ) |
16 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ≤ 𝐼 ) |
17 |
|
xrmineq |
⊢ ( ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
18 |
12 15 16 17
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
19 |
18
|
eqcomd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
20 |
9 19
|
sylbi |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) = ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
23 |
8 22
|
sseqtrrd |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( 𝑀 ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |