Metamath Proof Explorer


Theorem ssfzunsn

Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021) (Proof shortened by AV, 13-Nov-2021)

Ref Expression
Assertion ssfzunsn ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( 𝑀 ... if ( 𝐼𝑁 , 𝑁 , 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → 𝑆 ⊆ ( 𝑀 ... 𝑁 ) )
2 eluzel2 ( 𝐼 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
3 2 3ad2ant3 ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → 𝑀 ∈ ℤ )
4 simp2 ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → 𝑁 ∈ ℤ )
5 eluzelz ( 𝐼 ∈ ( ℤ𝑀 ) → 𝐼 ∈ ℤ )
6 5 3ad2ant3 ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → 𝐼 ∈ ℤ )
7 ssfzunsnext ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼𝑁 , 𝑁 , 𝐼 ) ) )
8 1 3 4 6 7 syl13anc ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼𝑁 , 𝑁 , 𝐼 ) ) )
9 eluz2 ( 𝐼 ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼 ) )
10 zre ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ )
11 10 rexrd ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ* )
12 11 3ad2ant2 ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼 ) → 𝐼 ∈ ℝ* )
13 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
14 13 rexrd ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* )
15 14 3ad2ant1 ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼 ) → 𝑀 ∈ ℝ* )
16 simp3 ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼 ) → 𝑀𝐼 )
17 xrmineq ( ( 𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼 ) → if ( 𝐼𝑀 , 𝐼 , 𝑀 ) = 𝑀 )
18 12 15 16 17 syl3anc ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼 ) → if ( 𝐼𝑀 , 𝐼 , 𝑀 ) = 𝑀 )
19 18 eqcomd ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼 ) → 𝑀 = if ( 𝐼𝑀 , 𝐼 , 𝑀 ) )
20 9 19 sylbi ( 𝐼 ∈ ( ℤ𝑀 ) → 𝑀 = if ( 𝐼𝑀 , 𝐼 , 𝑀 ) )
21 20 3ad2ant3 ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → 𝑀 = if ( 𝐼𝑀 , 𝐼 , 𝑀 ) )
22 21 oveq1d ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → ( 𝑀 ... if ( 𝐼𝑁 , 𝑁 , 𝐼 ) ) = ( if ( 𝐼𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼𝑁 , 𝑁 , 𝐼 ) ) )
23 8 22 sseqtrrd ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( 𝑀 ... if ( 𝐼𝑁 , 𝑁 , 𝐼 ) ) )