Description: Closure of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sshjcl | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sshjval | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
2 | unss | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ ) | |
3 | ocss | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ℋ ) | |
4 | occl | ⊢ ( ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Cℋ ) | |
5 | 3 4 | syl | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Cℋ ) |
6 | 2 5 | sylbi | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Cℋ ) |
7 | 1 6 | eqeltrd | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |