Description: Closure of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sshjcl | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sshjval | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 2 | unss | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ ) | |
| 3 | ocss | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ℋ ) | |
| 4 | occl | ⊢ ( ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Cℋ ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Cℋ ) |
| 6 | 2 5 | sylbi | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ Cℋ ) |
| 7 | 1 6 | eqeltrd | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |