| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 2 | 1 | elpw2 | ⊢ ( 𝐴  ∈  𝒫   ℋ  ↔  𝐴  ⊆   ℋ ) | 
						
							| 3 | 1 | elpw2 | ⊢ ( 𝐵  ∈  𝒫   ℋ  ↔  𝐵  ⊆   ℋ ) | 
						
							| 4 |  | uneq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  ∪  𝑦 )  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ⊥ ‘ ( 𝑥  ∪  𝑦 ) )  =  ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ⊥ ‘ ( ⊥ ‘ ( 𝑥  ∪  𝑦 ) ) )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 7 |  | df-chj | ⊢  ∨ℋ   =  ( 𝑥  ∈  𝒫   ℋ ,  𝑦  ∈  𝒫   ℋ  ↦  ( ⊥ ‘ ( ⊥ ‘ ( 𝑥  ∪  𝑦 ) ) ) ) | 
						
							| 8 |  | fvex | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) )  ∈  V | 
						
							| 9 | 6 7 8 | ovmpoa | ⊢ ( ( 𝐴  ∈  𝒫   ℋ  ∧  𝐵  ∈  𝒫   ℋ )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 10 | 2 3 9 | syl2anbr | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) |