Description: Value of join in the set of closed subspaces of Hilbert space CH . (Contributed by NM, 1-Nov-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sshjval2 | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ∩ { 𝑥 ∈ Cℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sshjval | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
2 | unss | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ ) | |
3 | ococin | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ∩ { 𝑥 ∈ Cℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) | |
4 | 2 3 | sylbi | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ∩ { 𝑥 ∈ Cℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) |
5 | 1 4 | eqtrd | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ∩ { 𝑥 ∈ Cℋ ∣ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑥 } ) |