| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 2 |
1
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ ) |
| 3 |
1
|
elpw2 |
⊢ ( 𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ ) |
| 4 |
|
uniprg |
⊢ ( ( 𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 5 |
2 3 4
|
syl2anbr |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) = ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 7 |
6
|
fveq2d |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ⊥ ‘ ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 8 |
|
prssi |
⊢ ( ( 𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ ) → { 𝐴 , 𝐵 } ⊆ 𝒫 ℋ ) |
| 9 |
2 3 8
|
syl2anbr |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → { 𝐴 , 𝐵 } ⊆ 𝒫 ℋ ) |
| 10 |
|
hsupval |
⊢ ( { 𝐴 , 𝐵 } ⊆ 𝒫 ℋ → ( ∨ℋ ‘ { 𝐴 , 𝐵 } ) = ( ⊥ ‘ ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ∨ℋ ‘ { 𝐴 , 𝐵 } ) = ( ⊥ ‘ ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) ) ) |
| 12 |
|
sshjval |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 13 |
7 11 12
|
3eqtr4rd |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ∨ℋ ‘ { 𝐴 , 𝐵 } ) ) |