| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 2 | 1 | elpw2 | ⊢ ( 𝐴  ∈  𝒫   ℋ  ↔  𝐴  ⊆   ℋ ) | 
						
							| 3 | 1 | elpw2 | ⊢ ( 𝐵  ∈  𝒫   ℋ  ↔  𝐵  ⊆   ℋ ) | 
						
							| 4 |  | uniprg | ⊢ ( ( 𝐴  ∈  𝒫   ℋ  ∧  𝐵  ∈  𝒫   ℋ )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 5 | 2 3 4 | syl2anbr | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( ⊥ ‘ ∪  { 𝐴 ,  𝐵 } )  =  ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( ⊥ ‘ ( ⊥ ‘ ∪  { 𝐴 ,  𝐵 } ) )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 8 |  | prssi | ⊢ ( ( 𝐴  ∈  𝒫   ℋ  ∧  𝐵  ∈  𝒫   ℋ )  →  { 𝐴 ,  𝐵 }  ⊆  𝒫   ℋ ) | 
						
							| 9 | 2 3 8 | syl2anbr | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  { 𝐴 ,  𝐵 }  ⊆  𝒫   ℋ ) | 
						
							| 10 |  | hsupval | ⊢ ( { 𝐴 ,  𝐵 }  ⊆  𝒫   ℋ  →  (  ∨ℋ  ‘ { 𝐴 ,  𝐵 } )  =  ( ⊥ ‘ ( ⊥ ‘ ∪  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  (  ∨ℋ  ‘ { 𝐴 ,  𝐵 } )  =  ( ⊥ ‘ ( ⊥ ‘ ∪  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 12 |  | sshjval | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 13 | 7 11 12 | 3eqtr4rd | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝐵  ⊆   ℋ )  →  ( 𝐴  ∨ℋ  𝐵 )  =  (  ∨ℋ  ‘ { 𝐴 ,  𝐵 } ) ) |