Step |
Hyp |
Ref |
Expression |
1 |
|
ssiinf.1 |
⊢ Ⅎ 𝑥 𝐶 |
2 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
3 |
2
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
4 |
3
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
6 |
1 5
|
ralcomf |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
7 |
4 6
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
8 |
|
dfss3 |
⊢ ( 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
9 |
|
dfss3 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
11 |
7 8 10
|
3bitr4i |
⊢ ( 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) |