Metamath Proof Explorer


Theorem ssiinf

Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012) (Proof shortened by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypothesis ssiinf.1 𝑥 𝐶
Assertion ssiinf ( 𝐶 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 ssiinf.1 𝑥 𝐶
2 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
3 2 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
4 3 ralbii ( ∀ 𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑦𝐶𝑥𝐴 𝑦𝐵 )
5 nfcv 𝑦 𝐴
6 1 5 ralcomf ( ∀ 𝑦𝐶𝑥𝐴 𝑦𝐵 ↔ ∀ 𝑥𝐴𝑦𝐶 𝑦𝐵 )
7 4 6 bitri ( ∀ 𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑦𝐶 𝑦𝐵 )
8 dfss3 ( 𝐶 𝑥𝐴 𝐵 ↔ ∀ 𝑦𝐶 𝑦 𝑥𝐴 𝐵 )
9 dfss3 ( 𝐶𝐵 ↔ ∀ 𝑦𝐶 𝑦𝐵 )
10 9 ralbii ( ∀ 𝑥𝐴 𝐶𝐵 ↔ ∀ 𝑥𝐴𝑦𝐶 𝑦𝐵 )
11 7 8 10 3bitr4i ( 𝐶 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝐶𝐵 )