| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssimaex.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝐴 )  =  ( 𝐴  ∩  dom  𝐹 ) | 
						
							| 3 | 2 | imaeq2i | ⊢ ( 𝐹  “  dom  ( 𝐹  ↾  𝐴 ) )  =  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) | 
						
							| 4 |  | imadmres | ⊢ ( 𝐹  “  dom  ( 𝐹  ↾  𝐴 ) )  =  ( 𝐹  “  𝐴 ) | 
						
							| 5 | 3 4 | eqtr3i | ⊢ ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) )  =  ( 𝐹  “  𝐴 ) | 
						
							| 6 | 5 | sseq2i | ⊢ ( 𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) )  ↔  𝐵  ⊆  ( 𝐹  “  𝐴 ) ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ⊆  ( 𝐴  ∩  dom  𝐹 ) | 
						
							| 8 |  | ssel2 | ⊢ ( ( 𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) ) | 
						
							| 9 | 8 | adantll | ⊢ ( ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) ) | 
						
							| 10 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  →  ∃ 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 ) ( 𝐹 ‘ 𝑤 )  =  𝑧 ) | 
						
							| 11 | 10 | ex | ⊢ ( Fun  𝐹  →  ( 𝑧  ∈  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 ) ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) )  →  ∃ 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 ) ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 13 |  | eleq1a | ⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝐹 ‘ 𝑤 )  =  𝑧  →  ( 𝐹 ‘ 𝑤 )  ∈  𝐵 ) ) | 
						
							| 14 | 13 | anim2d | ⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑤 )  =  𝑧 )  →  ( 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝐵 ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝐵  ↔  ( 𝐹 ‘ 𝑤 )  ∈  𝐵 ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ↔  ( 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝐵 ) ) | 
						
							| 18 | 14 17 | imbitrrdi | ⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑤 )  =  𝑧 )  →  𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑤 )  =  𝑧 )  →  ( 𝐹 ‘ 𝑤 )  =  𝑧 ) | 
						
							| 20 | 18 19 | jca2 | ⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑤 )  =  𝑧 )  →  ( 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ∧  ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) ) | 
						
							| 21 | 20 | reximdv2 | ⊢ ( 𝑧  ∈  𝐵  →  ( ∃ 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 ) ( 𝐹 ‘ 𝑤 )  =  𝑧  →  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  𝐵 )  →  ( ∃ 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 ) ( 𝐹 ‘ 𝑤 )  =  𝑧  →  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 23 |  | funfn | ⊢ ( Fun  𝐹  ↔  𝐹  Fn  dom  𝐹 ) | 
						
							| 24 |  | inss2 | ⊢ ( 𝐴  ∩  dom  𝐹 )  ⊆  dom  𝐹 | 
						
							| 25 | 7 24 | sstri | ⊢ { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ⊆  dom  𝐹 | 
						
							| 26 |  | fvelimab | ⊢ ( ( 𝐹  Fn  dom  𝐹  ∧  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ⊆  dom  𝐹 )  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } )  ↔  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 27 | 25 26 | mpan2 | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } )  ↔  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 28 | 23 27 | sylbi | ⊢ ( Fun  𝐹  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } )  ↔  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } )  ↔  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 30 | 22 29 | sylibrd | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  𝐵 )  →  ( ∃ 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 ) ( 𝐹 ‘ 𝑤 )  =  𝑧  →  𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) ) | 
						
							| 31 | 12 30 | syld | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) )  →  𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) )  →  𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) ) | 
						
							| 33 | 9 32 | mpd | ⊢ ( ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  →  ( 𝑧  ∈  𝐵  →  𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) ) | 
						
							| 35 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) )  →  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) | 
						
							| 36 | 35 | ex | ⊢ ( Fun  𝐹  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } )  →  ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 37 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑤 )  =  𝑧  →  ( ( 𝐹 ‘ 𝑤 )  ∈  𝐵  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 38 | 37 | biimpcd | ⊢ ( ( 𝐹 ‘ 𝑤 )  ∈  𝐵  →  ( ( 𝐹 ‘ 𝑤 )  =  𝑧  →  𝑧  ∈  𝐵 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑤  ∈  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑤 )  =  𝑧  →  𝑧  ∈  𝐵 ) ) | 
						
							| 40 | 17 39 | sylbi | ⊢ ( 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  →  ( ( 𝐹 ‘ 𝑤 )  =  𝑧  →  𝑧  ∈  𝐵 ) ) | 
						
							| 41 | 40 | rexlimiv | ⊢ ( ∃ 𝑤  ∈  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ( 𝐹 ‘ 𝑤 )  =  𝑧  →  𝑧  ∈  𝐵 ) | 
						
							| 42 | 36 41 | syl6 | ⊢ ( Fun  𝐹  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } )  →  𝑧  ∈  𝐵 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } )  →  𝑧  ∈  𝐵 ) ) | 
						
							| 44 | 34 43 | impbid | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  →  ( 𝑧  ∈  𝐵  ↔  𝑧  ∈  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) ) | 
						
							| 45 | 44 | eqrdv | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  →  𝐵  =  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) | 
						
							| 46 | 1 | inex1 | ⊢ ( 𝐴  ∩  dom  𝐹 )  ∈  V | 
						
							| 47 | 46 | rabex | ⊢ { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ∈  V | 
						
							| 48 |  | sseq1 | ⊢ ( 𝑥  =  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  →  ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  ↔  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ⊆  ( 𝐴  ∩  dom  𝐹 ) ) ) | 
						
							| 49 |  | imaeq2 | ⊢ ( 𝑥  =  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  →  ( 𝐹  “  𝑥 )  =  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) | 
						
							| 50 | 49 | eqeq2d | ⊢ ( 𝑥  =  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  →  ( 𝐵  =  ( 𝐹  “  𝑥 )  ↔  𝐵  =  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) ) | 
						
							| 51 | 48 50 | anbi12d | ⊢ ( 𝑥  =  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  →  ( ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  𝐵  =  ( 𝐹  “  𝑥 ) )  ↔  ( { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  𝐵  =  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) ) ) ) | 
						
							| 52 | 47 51 | spcev | ⊢ ( ( { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 }  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  𝐵  =  ( 𝐹  “  { 𝑦  ∈  ( 𝐴  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 } ) )  →  ∃ 𝑥 ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  𝐵  =  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 53 | 7 45 52 | sylancr | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  →  ∃ 𝑥 ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  𝐵  =  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 54 |  | inss1 | ⊢ ( 𝐴  ∩  dom  𝐹 )  ⊆  𝐴 | 
						
							| 55 |  | sstr | ⊢ ( ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  ( 𝐴  ∩  dom  𝐹 )  ⊆  𝐴 )  →  𝑥  ⊆  𝐴 ) | 
						
							| 56 | 54 55 | mpan2 | ⊢ ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  →  𝑥  ⊆  𝐴 ) | 
						
							| 57 | 56 | anim1i | ⊢ ( ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  𝐵  =  ( 𝐹  “  𝑥 ) )  →  ( 𝑥  ⊆  𝐴  ∧  𝐵  =  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 58 | 57 | eximi | ⊢ ( ∃ 𝑥 ( 𝑥  ⊆  ( 𝐴  ∩  dom  𝐹 )  ∧  𝐵  =  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝐵  =  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 59 | 53 58 | syl | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  ( 𝐴  ∩  dom  𝐹 ) ) )  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝐵  =  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 60 | 6 59 | sylan2br | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  ( 𝐹  “  𝐴 ) )  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝐵  =  ( 𝐹  “  𝑥 ) ) ) |