Step |
Hyp |
Ref |
Expression |
1 |
|
ssimaex.1 |
⊢ 𝐴 ∈ V |
2 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) |
3 |
2
|
imaeq2i |
⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) |
4 |
|
imadmres |
⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 “ 𝐴 ) |
5 |
3 4
|
eqtr3i |
⊢ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) = ( 𝐹 “ 𝐴 ) |
6 |
5
|
sseq2i |
⊢ ( 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ↔ 𝐵 ⊆ ( 𝐹 “ 𝐴 ) ) |
7 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) |
8 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) |
9 |
8
|
adantll |
⊢ ( ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) |
10 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 ) |
11 |
10
|
ex |
⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
12 |
11
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
13 |
|
eleq1a |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) |
14 |
13
|
anim2d |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) |
17 |
16
|
elrab |
⊢ ( 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ↔ ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) |
18 |
14 17
|
syl6ibr |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) |
19 |
|
simpr |
⊢ ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝐹 ‘ 𝑤 ) = 𝑧 ) |
20 |
18 19
|
jca2 |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) ) |
21 |
20
|
reximdv2 |
⊢ ( 𝑧 ∈ 𝐵 → ( ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
22 |
21
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
23 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
24 |
|
inss2 |
⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
25 |
7 24
|
sstri |
⊢ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ dom 𝐹 |
26 |
|
fvelimab |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ dom 𝐹 ) → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
27 |
25 26
|
mpan2 |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
28 |
23 27
|
sylbi |
⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
29 |
28
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
30 |
22 29
|
sylibrd |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
31 |
12 30
|
syld |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
32 |
31
|
adantlr |
⊢ ( ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
33 |
9 32
|
mpd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) |
34 |
33
|
ex |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
35 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) |
36 |
35
|
ex |
⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
37 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
38 |
37
|
biimpcd |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) ) |
40 |
17 39
|
sylbi |
⊢ ( 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) ) |
41 |
40
|
rexlimiv |
⊢ ( ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) |
42 |
36 41
|
syl6 |
⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) → 𝑧 ∈ 𝐵 ) ) |
43 |
42
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) → 𝑧 ∈ 𝐵 ) ) |
44 |
34 43
|
impbid |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
45 |
44
|
eqrdv |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) |
46 |
1
|
inex1 |
⊢ ( 𝐴 ∩ dom 𝐹 ) ∈ V |
47 |
46
|
rabex |
⊢ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ∈ V |
48 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ↔ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) ) ) |
49 |
|
imaeq2 |
⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) |
50 |
49
|
eqeq2d |
⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( 𝐵 = ( 𝐹 “ 𝑥 ) ↔ 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
51 |
48 50
|
anbi12d |
⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ↔ ( { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) ) |
52 |
47 51
|
spcev |
⊢ ( ( { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) → ∃ 𝑥 ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
53 |
7 45 52
|
sylancr |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ∃ 𝑥 ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
54 |
|
inss1 |
⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 |
55 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
56 |
54 55
|
mpan2 |
⊢ ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) → 𝑥 ⊆ 𝐴 ) |
57 |
56
|
anim1i |
⊢ ( ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
58 |
57
|
eximi |
⊢ ( ∃ 𝑥 ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
59 |
53 58
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
60 |
6 59
|
sylan2br |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |