| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
| 2 |
1
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 3 |
2
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 4 |
|
jcab |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
| 6 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
| 7 |
3 5 6
|
3bitrri |
⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 8 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 9 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 10 |
8 9
|
anbi12i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
| 11 |
|
df-ss |
⊢ ( 𝐴 ⊆ ( 𝐵 ∩ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 12 |
7 10 11
|
3bitr4i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐵 ∩ 𝐶 ) ) |