| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssinc.1 | 
							⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssinc.2 | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑁  ∈  ℤ )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑁 )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ≤  𝑁 )  | 
						
						
							| 10 | 
							
								6
							 | 
							zred | 
							⊢ ( 𝜑  →  𝑁  ∈  ℝ )  | 
						
						
							| 11 | 
							
								10
							 | 
							leidd | 
							⊢ ( 𝜑  →  𝑁  ≤  𝑁 )  | 
						
						
							| 12 | 
							
								6 9 11
							 | 
							3jca | 
							⊢ ( 𝜑  →  ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑁 ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑁 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							id | 
							⊢ ( 𝜑  →  𝜑 )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑀  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑀 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							sseq2d | 
							⊢ ( 𝑛  =  𝑀  →  ( ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑀 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imbi2d | 
							⊢ ( 𝑛  =  𝑀  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑀 ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							sseq2d | 
							⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imbi2d | 
							⊢ ( 𝑛  =  𝑚  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							sseq2d | 
							⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							imbi2d | 
							⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑁 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							sseq2d | 
							⊢ ( 𝑛  =  𝑁  →  ( ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑁 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							imbi2d | 
							⊢ ( 𝑛  =  𝑁  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑛 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑁 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							ssidd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑀 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑀 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  ∧  𝜑 )  →  𝜑 )  | 
						
						
							| 30 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							pm3.35 | 
							⊢ ( ( 𝜑  ∧  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) ) )  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  | 
						
						
							| 32 | 
							
								29 30 31
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3adant1 | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝜑 )  | 
						
						
							| 35 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 36 | 
							
								
							 | 
							simplr1 | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝑚  ∈  ℤ )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr2 | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝑀  ≤  𝑚 )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							3jca | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  ( 𝑀  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eluz2 | 
							⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚 ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							sylibr | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 42 | 
							
								
							 | 
							simplr3 | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝑚  <  𝑁 )  | 
						
						
							| 43 | 
							
								40 41 42
							 | 
							3jca | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ℤ  ∧  𝑚  <  𝑁 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							elfzo2 | 
							⊢ ( 𝑚  ∈  ( 𝑀 ..^ 𝑁 )  ↔  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ℤ  ∧  𝑚  <  𝑁 ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							sylibr | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  𝑚  ∈  ( 𝑀 ..^ 𝑁 ) )  | 
						
						
							| 46 | 
							
								34 45 2
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  𝜑 )  →  ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3adant2 | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  | 
						
						
							| 48 | 
							
								33 47
							 | 
							sstrd | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  ∧  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  ∧  𝜑 )  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ ( 𝑚  +  1 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							3exp | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚  ∧  𝑚  <  𝑁 ) )  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑚 ) )  →  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ ( 𝑚  +  1 ) ) ) ) )  | 
						
						
							| 50 | 
							
								17 20 23 26 28 49
							 | 
							fzind | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑁 ) )  →  ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑁 ) ) )  | 
						
						
							| 51 | 
							
								13 14 50
							 | 
							sylc | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ⊆  ( 𝐹 ‘ 𝑁 ) )  |