Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssindif0 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj2 | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ∅ ↔ 𝐴 ⊆ ( V ∖ ( V ∖ 𝐵 ) ) ) | |
| 2 | ddif | ⊢ ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵 | |
| 3 | 2 | sseq2i | ⊢ ( 𝐴 ⊆ ( V ∖ ( V ∖ 𝐵 ) ) ↔ 𝐴 ⊆ 𝐵 ) |
| 4 | 1 3 | bitr2i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ∅ ) |