Metamath Proof Explorer


Theorem ssindif0

Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003)

Ref Expression
Assertion ssindif0 ( 𝐴𝐵 ↔ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ∅ )

Proof

Step Hyp Ref Expression
1 disj2 ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ∅ ↔ 𝐴 ⊆ ( V ∖ ( V ∖ 𝐵 ) ) )
2 ddif ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵
3 2 sseq2i ( 𝐴 ⊆ ( V ∖ ( V ∖ 𝐵 ) ) ↔ 𝐴𝐵 )
4 1 3 bitr2i ( 𝐴𝐵 ↔ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ∅ )