Metamath Proof Explorer


Theorem ssinss1d

Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis ssinss1d.1 ( 𝜑𝐴𝐶 )
Assertion ssinss1d ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 ssinss1d.1 ( 𝜑𝐴𝐶 )
2 ssinss1 ( 𝐴𝐶 → ( 𝐴𝐵 ) ⊆ 𝐶 )
3 1 2 syl ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )