Metamath Proof Explorer


Theorem ssinss2d

Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis ssinss2d.1 ( 𝜑𝐵𝐶 )
Assertion ssinss2d ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 ssinss2d.1 ( 𝜑𝐵𝐶 )
2 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
3 1 ssinss1d ( 𝜑 → ( 𝐵𝐴 ) ⊆ 𝐶 )
4 2 3 eqsstrid ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )