Metamath Proof Explorer


Theorem ssint

Description: Subclass of a class intersection. Theorem 5.11(viii) of Monk1 p. 52 and its converse. (Contributed by NM, 14-Oct-1999)

Ref Expression
Assertion ssint ( 𝐴 𝐵 ↔ ∀ 𝑥𝐵 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 dfss3 ( 𝐴 𝐵 ↔ ∀ 𝑦𝐴 𝑦 𝐵 )
2 vex 𝑦 ∈ V
3 2 elint2 ( 𝑦 𝐵 ↔ ∀ 𝑥𝐵 𝑦𝑥 )
4 3 ralbii ( ∀ 𝑦𝐴 𝑦 𝐵 ↔ ∀ 𝑦𝐴𝑥𝐵 𝑦𝑥 )
5 ralcom ( ∀ 𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀ 𝑥𝐵𝑦𝐴 𝑦𝑥 )
6 dfss3 ( 𝐴𝑥 ↔ ∀ 𝑦𝐴 𝑦𝑥 )
7 6 ralbii ( ∀ 𝑥𝐵 𝐴𝑥 ↔ ∀ 𝑥𝐵𝑦𝐴 𝑦𝑥 )
8 5 7 bitr4i ( ∀ 𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀ 𝑥𝐵 𝐴𝑥 )
9 1 4 8 3bitri ( 𝐴 𝐵 ↔ ∀ 𝑥𝐵 𝐴𝑥 )