Description: Subclass of a class intersection. Theorem 5.11(viii) of Monk1 p. 52 and its converse. (Contributed by NM, 14-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssint | ⊢ ( 𝐴 ⊆ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 | ⊢ ( 𝐴 ⊆ ∩ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 | ⊢ ( 𝑦 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) |
| 5 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 𝑦 ∈ 𝑥 ) | |
| 6 | dfss3 | ⊢ ( 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ 𝑥 ) | |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
| 8 | 5 7 | bitr4i | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ) |
| 9 | 1 4 8 | 3bitri | ⊢ ( 𝐴 ⊆ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ) |