Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssintab | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } 𝐴 ⊆ 𝑦 ) | |
| 2 | sseq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑥 ) ) | |
| 3 | 2 | ralab2 | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } 𝐴 ⊆ 𝑦 ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
| 4 | 1 3 | bitri | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |