Metamath Proof Explorer


Theorem ssintab

Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion ssintab ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) )

Proof

Step Hyp Ref Expression
1 ssint ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑦 ∈ { 𝑥𝜑 } 𝐴𝑦 )
2 sseq2 ( 𝑦 = 𝑥 → ( 𝐴𝑦𝐴𝑥 ) )
3 2 ralab2 ( ∀ 𝑦 ∈ { 𝑥𝜑 } 𝐴𝑦 ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) )
4 1 3 bitri ( 𝐴 { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑𝐴𝑥 ) )