Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006) (Proof shortened by Andrew Salmon, 9-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ssintab | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } 𝐴 ⊆ 𝑦 ) | |
2 | sseq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑥 ) ) | |
3 | 2 | ralab2 | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } 𝐴 ⊆ 𝑦 ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
4 | 1 3 | bitri | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |