| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
| 2 |
1
|
inteqi |
⊢ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
| 3 |
2
|
sseq2i |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 4 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ⊆ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) ) |
| 6 |
|
ssintab |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ⊆ 𝑥 ) ) |
| 7 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) ) |
| 8 |
5 6 7
|
3bitr4i |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
| 9 |
3 8
|
bitri |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |