Metamath Proof Explorer


Theorem ssintrab

Description: Subclass of the intersection of a restricted class abstraction. (Contributed by NM, 30-Jan-2015)

Ref Expression
Assertion ssintrab ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
2 1 inteqi { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
3 2 sseq2i ( 𝐴 { 𝑥𝐵𝜑 } ↔ 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } )
4 impexp ( ( ( 𝑥𝐵𝜑 ) → 𝐴𝑥 ) ↔ ( 𝑥𝐵 → ( 𝜑𝐴𝑥 ) ) )
5 4 albii ( ∀ 𝑥 ( ( 𝑥𝐵𝜑 ) → 𝐴𝑥 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝜑𝐴𝑥 ) ) )
6 ssintab ( 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ∀ 𝑥 ( ( 𝑥𝐵𝜑 ) → 𝐴𝑥 ) )
7 df-ral ( ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝜑𝐴𝑥 ) ) )
8 5 6 7 3bitr4i ( 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) )
9 3 8 bitri ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∀ 𝑥𝐵 ( 𝜑𝐴𝑥 ) )