Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssintub | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssint | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } 𝐴 ⊆ 𝑦 ) | |
| 2 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦 ) ) | |
| 3 | 2 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦 ) ) | 
| 4 | 3 | simprbi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → 𝐴 ⊆ 𝑦 ) | 
| 5 | 1 4 | mprgbir | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } |