Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ssiun | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐶 ⊆ 𝐵 → ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵 ) ) | |
2 | 1 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵 ) ) |
3 | r19.37v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) | |
4 | 2 3 | syl | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ( 𝑦 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
5 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
6 | 4 5 | syl6ibr | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ( 𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
7 | 6 | ssrdv | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |