Metamath Proof Explorer


Theorem ssiun

Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ssiun ( ∃ 𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐶𝐵 → ( 𝑦𝐶𝑦𝐵 ) )
2 1 reximi ( ∃ 𝑥𝐴 𝐶𝐵 → ∃ 𝑥𝐴 ( 𝑦𝐶𝑦𝐵 ) )
3 r19.37v ( ∃ 𝑥𝐴 ( 𝑦𝐶𝑦𝐵 ) → ( 𝑦𝐶 → ∃ 𝑥𝐴 𝑦𝐵 ) )
4 2 3 syl ( ∃ 𝑥𝐴 𝐶𝐵 → ( 𝑦𝐶 → ∃ 𝑥𝐴 𝑦𝐵 ) )
5 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
6 4 5 syl6ibr ( ∃ 𝑥𝐴 𝐶𝐵 → ( 𝑦𝐶𝑦 𝑥𝐴 𝐵 ) )
7 6 ssrdv ( ∃ 𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵 )