Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
2 | 1 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
3 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
4 | 2 3 | syl6ibr | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
5 | 4 | ssrdv | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |