Metamath Proof Explorer


Theorem ssiun2

Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ssiun2 ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 rspe ( ( 𝑥𝐴𝑦𝐵 ) → ∃ 𝑥𝐴 𝑦𝐵 )
2 1 ex ( 𝑥𝐴 → ( 𝑦𝐵 → ∃ 𝑥𝐴 𝑦𝐵 ) )
3 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
4 2 3 syl6ibr ( 𝑥𝐴 → ( 𝑦𝐵𝑦 𝑥𝐴 𝐵 ) )
5 4 ssrdv ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )