Metamath Proof Explorer


Theorem ssiun2s

Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003)

Ref Expression
Hypothesis ssiun2s.1 ( 𝑥 = 𝐶𝐵 = 𝐷 )
Assertion ssiun2s ( 𝐶𝐴𝐷 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ssiun2s.1 ( 𝑥 = 𝐶𝐵 = 𝐷 )
2 nfcv 𝑥 𝐶
3 nfcv 𝑥 𝐷
4 nfiu1 𝑥 𝑥𝐴 𝐵
5 3 4 nfss 𝑥 𝐷 𝑥𝐴 𝐵
6 1 sseq1d ( 𝑥 = 𝐶 → ( 𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵 ) )
7 ssiun2 ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )
8 2 5 6 7 vtoclgaf ( 𝐶𝐴𝐷 𝑥𝐴 𝐵 )