Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssiun2s.1 | ⊢ ( 𝑥 = 𝐶 → 𝐵 = 𝐷 ) | |
Assertion | ssiun2s | ⊢ ( 𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun2s.1 | ⊢ ( 𝑥 = 𝐶 → 𝐵 = 𝐷 ) | |
2 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
3 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
4 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 | |
5 | 3 4 | nfss | ⊢ Ⅎ 𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
6 | 1 | sseq1d | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
7 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
8 | 2 5 6 7 | vtoclgaf | ⊢ ( 𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |