Step |
Hyp |
Ref |
Expression |
1 |
|
ssiun2sf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
ssiun2sf.2 |
⊢ Ⅎ 𝑥 𝐶 |
3 |
|
ssiun2sf.3 |
⊢ Ⅎ 𝑥 𝐷 |
4 |
|
ssiun2sf.4 |
⊢ ( 𝑥 = 𝐶 → 𝐵 = 𝐷 ) |
5 |
2 1
|
nfel |
⊢ Ⅎ 𝑥 𝐶 ∈ 𝐴 |
6 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
7 |
3 6
|
nfss |
⊢ Ⅎ 𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
8 |
5 7
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
9 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
10 |
4
|
sseq1d |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ) |
12 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
13 |
2 8 11 12
|
vtoclgf |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
14 |
13
|
pm2.43i |
⊢ ( 𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |