Metamath Proof Explorer


Theorem ssiun2sf

Description: Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016)

Ref Expression
Hypotheses ssiun2sf.1 𝑥 𝐴
ssiun2sf.2 𝑥 𝐶
ssiun2sf.3 𝑥 𝐷
ssiun2sf.4 ( 𝑥 = 𝐶𝐵 = 𝐷 )
Assertion ssiun2sf ( 𝐶𝐴𝐷 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ssiun2sf.1 𝑥 𝐴
2 ssiun2sf.2 𝑥 𝐶
3 ssiun2sf.3 𝑥 𝐷
4 ssiun2sf.4 ( 𝑥 = 𝐶𝐵 = 𝐷 )
5 2 1 nfel 𝑥 𝐶𝐴
6 nfiu1 𝑥 𝑥𝐴 𝐵
7 3 6 nfss 𝑥 𝐷 𝑥𝐴 𝐵
8 5 7 nfim 𝑥 ( 𝐶𝐴𝐷 𝑥𝐴 𝐵 )
9 eleq1 ( 𝑥 = 𝐶 → ( 𝑥𝐴𝐶𝐴 ) )
10 4 sseq1d ( 𝑥 = 𝐶 → ( 𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵 ) )
11 9 10 imbi12d ( 𝑥 = 𝐶 → ( ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 ) ↔ ( 𝐶𝐴𝐷 𝑥𝐴 𝐵 ) ) )
12 ssiun2 ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )
13 2 8 11 12 vtoclgf ( 𝐶𝐴 → ( 𝐶𝐴𝐷 𝑥𝐴 𝐵 ) )
14 13 pm2.43i ( 𝐶𝐴𝐷 𝑥𝐴 𝐵 )