| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssiun2sf.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							ssiun2sf.2 | 
							⊢ Ⅎ 𝑥 𝐶  | 
						
						
							| 3 | 
							
								
							 | 
							ssiun2sf.3 | 
							⊢ Ⅎ 𝑥 𝐷  | 
						
						
							| 4 | 
							
								
							 | 
							ssiun2sf.4 | 
							⊢ ( 𝑥  =  𝐶  →  𝐵  =  𝐷 )  | 
						
						
							| 5 | 
							
								2 1
							 | 
							nfel | 
							⊢ Ⅎ 𝑥 𝐶  ∈  𝐴  | 
						
						
							| 6 | 
							
								
							 | 
							nfiu1 | 
							⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 𝐵  | 
						
						
							| 7 | 
							
								3 6
							 | 
							nfss | 
							⊢ Ⅎ 𝑥 𝐷  ⊆  ∪  𝑥  ∈  𝐴 𝐵  | 
						
						
							| 8 | 
							
								5 7
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( 𝐶  ∈  𝐴  →  𝐷  ⊆  ∪  𝑥  ∈  𝐴 𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝐶  →  ( 𝑥  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							sseq1d | 
							⊢ ( 𝑥  =  𝐶  →  ( 𝐵  ⊆  ∪  𝑥  ∈  𝐴 𝐵  ↔  𝐷  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝐶  →  ( ( 𝑥  ∈  𝐴  →  𝐵  ⊆  ∪  𝑥  ∈  𝐴 𝐵 )  ↔  ( 𝐶  ∈  𝐴  →  𝐷  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ssiun2 | 
							⊢ ( 𝑥  ∈  𝐴  →  𝐵  ⊆  ∪  𝑥  ∈  𝐴 𝐵 )  | 
						
						
							| 13 | 
							
								2 8 11 12
							 | 
							vtoclgf | 
							⊢ ( 𝐶  ∈  𝐴  →  ( 𝐶  ∈  𝐴  →  𝐷  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							pm2.43i | 
							⊢ ( 𝐶  ∈  𝐴  →  𝐷  ⊆  ∪  𝑥  ∈  𝐴 𝐵 )  |