Description: Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | ssiun3 | ⊢ ( ∀ 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 | ⊢ ( 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
2 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
3 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
4 | 3 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
5 | 1 2 4 | 3bitr2ri | ⊢ ( ∀ 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |