Metamath Proof Explorer


Theorem ssiun3

Description: Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016)

Ref Expression
Assertion ssiun3 ( ∀ 𝑦𝐶𝑥𝐴 𝑦𝐵𝐶 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐶 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ( 𝑦𝐶𝑦 𝑥𝐴 𝐵 ) )
2 df-ral ( ∀ 𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ( 𝑦𝐶𝑦 𝑥𝐴 𝐵 ) )
3 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
4 3 ralbii ( ∀ 𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑦𝐶𝑥𝐴 𝑦𝐵 )
5 1 2 4 3bitr2ri ( ∀ 𝑦𝐶𝑥𝐴 𝑦𝐵𝐶 𝑥𝐴 𝐵 )