Metamath Proof Explorer
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999)
|
|
Ref |
Expression |
|
Assertion |
sslin |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∩ 𝐴 ) ⊆ ( 𝐶 ∩ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssrin |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ 𝐶 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
2 |
|
incom |
⊢ ( 𝐶 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐶 ) |
3 |
|
incom |
⊢ ( 𝐶 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐶 ) |
4 |
1 2 3
|
3sstr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∩ 𝐴 ) ⊆ ( 𝐶 ∩ 𝐵 ) ) |