Metamath Proof Explorer


Theorem sslin

Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999)

Ref Expression
Assertion sslin ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssrin ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
2 incom ( 𝐶𝐴 ) = ( 𝐴𝐶 )
3 incom ( 𝐶𝐵 ) = ( 𝐵𝐶 )
4 1 2 3 3sstr4g ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )