Metamath Proof Explorer


Theorem sslm

Description: A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015)

Ref Expression
Assertion sslm ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( ⇝𝑡𝐾 ) ⊆ ( ⇝𝑡𝐽 ) )

Proof

Step Hyp Ref Expression
1 idd ( 𝐽𝐾 → ( 𝑓 ∈ ( 𝑋pm ℂ ) → 𝑓 ∈ ( 𝑋pm ℂ ) ) )
2 idd ( 𝐽𝐾 → ( 𝑥𝑋𝑥𝑋 ) )
3 ssralv ( 𝐽𝐾 → ( ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) → ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) )
4 1 2 3 3anim123d ( 𝐽𝐾 → ( ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) → ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) ) )
5 4 ssopab2dv ( 𝐽𝐾 → { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } ⊆ { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
6 5 3ad2ant3 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } ⊆ { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
7 lmfval ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡𝐾 ) = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
8 7 3ad2ant2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( ⇝𝑡𝐾 ) = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
9 lmfval ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡𝐽 ) = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
10 9 3ad2ant1 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( ⇝𝑡𝐽 ) = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
11 6 8 10 3sstr4d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( ⇝𝑡𝐾 ) ⊆ ( ⇝𝑡𝐽 ) )