Step |
Hyp |
Ref |
Expression |
1 |
|
idd |
⊢ ( 𝐽 ⊆ 𝐾 → ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) → 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ) |
2 |
|
idd |
⊢ ( 𝐽 ⊆ 𝐾 → ( 𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋 ) ) |
3 |
|
ssralv |
⊢ ( 𝐽 ⊆ 𝐾 → ( ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) → ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
4 |
1 2 3
|
3anim123d |
⊢ ( 𝐽 ⊆ 𝐾 → ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) → ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |
5 |
4
|
ssopab2dv |
⊢ ( 𝐽 ⊆ 𝐾 → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
7 |
|
lmfval |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡 ‘ 𝐾 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ⇝𝑡 ‘ 𝐾 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
9 |
|
lmfval |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
11 |
6 8 10
|
3sstr4d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ⇝𝑡 ‘ 𝐾 ) ⊆ ( ⇝𝑡 ‘ 𝐽 ) ) |