| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
ssltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
ssltd.3 |
⊢ ( 𝜑 → 𝐴 ⊆ No ) |
| 4 |
|
ssltd.4 |
⊢ ( 𝜑 → 𝐵 ⊆ No ) |
| 5 |
|
ssltd.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 <s 𝑦 ) |
| 6 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 7 |
2
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 8 |
5
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 <s 𝑦 ) |
| 9 |
8
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) |
| 10 |
3 4 9
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) |
| 11 |
|
brsslt |
⊢ ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) |
| 12 |
6 7 10 11
|
syl21anbrc |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |