| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvexd |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) ∈ V ) |
| 2 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ No → { 𝐴 } ∈ V ) |
| 4 |
|
leftf |
⊢ L : No ⟶ 𝒫 No |
| 5 |
4
|
ffvelcdmi |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) ∈ 𝒫 No ) |
| 6 |
5
|
elpwid |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) ⊆ No ) |
| 7 |
|
snssi |
⊢ ( 𝐴 ∈ No → { 𝐴 } ⊆ No ) |
| 8 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) |
| 9 |
|
leftval |
⊢ ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } |
| 10 |
9
|
a1i |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ) |
| 11 |
10
|
eleq2d |
⊢ ( 𝐴 ∈ No → ( 𝑥 ∈ ( L ‘ 𝐴 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ) ) |
| 12 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝑥 <s 𝐴 ) ) |
| 13 |
11 12
|
bitrdi |
⊢ ( 𝐴 ∈ No → ( 𝑥 ∈ ( L ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝑥 <s 𝐴 ) ) ) |
| 14 |
13
|
simplbda |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘ 𝐴 ) ) → 𝑥 <s 𝐴 ) |
| 15 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴 ) ) |
| 16 |
14 15
|
imbitrrid |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘ 𝐴 ) ) → 𝑥 <s 𝑦 ) ) |
| 17 |
16
|
expd |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 ∈ No → ( 𝑥 ∈ ( L ‘ 𝐴 ) → 𝑥 <s 𝑦 ) ) ) |
| 18 |
8 17
|
sylbi |
⊢ ( 𝑦 ∈ { 𝐴 } → ( 𝐴 ∈ No → ( 𝑥 ∈ ( L ‘ 𝐴 ) → 𝑥 <s 𝑦 ) ) ) |
| 19 |
18
|
3imp231 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘ 𝐴 ) ∧ 𝑦 ∈ { 𝐴 } ) → 𝑥 <s 𝑦 ) |
| 20 |
1 3 6 7 19
|
ssltd |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |