Step |
Hyp |
Ref |
Expression |
1 |
|
ssltmul1.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
ssltmul1.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
3 |
|
ssltmul1.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
4 |
|
ssltmul1.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
6 |
5
|
rnmpo |
⊢ ran ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } |
7 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
9 |
|
ssltex1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ∈ V ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
11 |
5
|
mpoexg |
⊢ ( ( 𝐿 ∈ V ∧ 𝑀 ∈ V ) → ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
12 |
8 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
13 |
|
rnexg |
⊢ ( ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V → ran ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ran ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
15 |
6 14
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∈ V ) |
16 |
|
eqid |
⊢ ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
17 |
16
|
rnmpo |
⊢ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } |
18 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
20 |
|
ssltex2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ∈ V ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
22 |
16
|
mpoexg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
23 |
19 21 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
24 |
|
rnexg |
⊢ ( ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V → ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
26 |
17 25
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ∈ V ) |
27 |
15 26
|
unexd |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∈ V ) |
28 |
|
snex |
⊢ { ( 𝐴 ·s 𝐵 ) } ∈ V |
29 |
28
|
a1i |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ∈ V ) |
30 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
31 |
1 30
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐿 ⊆ No ) |
33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ 𝐿 ) |
34 |
32 33
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ No ) |
35 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
36 |
4 35
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
38 |
34 37
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝐵 ) ∈ No ) |
39 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
40 |
3 39
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
42 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
43 |
2 42
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑀 ⊆ No ) |
45 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ 𝑀 ) |
46 |
44 45
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ No ) |
47 |
41 46
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑞 ) ∈ No ) |
48 |
38 47
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) ∈ No ) |
49 |
34 46
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝑞 ) ∈ No ) |
50 |
48 49
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
51 |
|
eleq1 |
⊢ ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑎 ∈ No ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) ) |
52 |
50 51
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑎 ∈ No ) ) |
53 |
52
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑎 ∈ No ) ) |
54 |
53
|
abssdv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ No ) |
55 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
56 |
1 55
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑅 ⊆ No ) |
58 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ 𝑅 ) |
59 |
57 58
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ No ) |
60 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
61 |
59 60
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝐵 ) ∈ No ) |
62 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
63 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
64 |
2 63
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑆 ⊆ No ) |
66 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ 𝑆 ) |
67 |
65 66
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ No ) |
68 |
62 67
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑠 ) ∈ No ) |
69 |
61 68
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) ∈ No ) |
70 |
59 67
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
71 |
69 70
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
72 |
|
eleq1 |
⊢ ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( 𝑏 ∈ No ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) ) |
73 |
71 72
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑏 ∈ No ) ) |
74 |
73
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑏 ∈ No ) ) |
75 |
74
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ No ) |
76 |
54 75
|
unssd |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ⊆ No ) |
77 |
40 36
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
78 |
77
|
snssd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ⊆ No ) |
79 |
|
elun |
⊢ ( 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( 𝑥 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) |
80 |
|
vex |
⊢ 𝑥 ∈ V |
81 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
82 |
81
|
2rexbidv |
⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
83 |
80 82
|
elab |
⊢ ( 𝑥 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
84 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
85 |
84
|
2rexbidv |
⊢ ( 𝑏 = 𝑥 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
86 |
80 85
|
elab |
⊢ ( 𝑥 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
87 |
83 86
|
orbi12i |
⊢ ( ( 𝑥 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
88 |
79 87
|
bitri |
⊢ ( 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
89 |
38 47 49
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) +s ( 𝐴 ·s 𝑞 ) ) ) |
90 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
91 |
1 90
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
92 |
91
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
94 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
95 |
94
|
snid |
⊢ ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } |
96 |
3 95
|
eqeltrdi |
⊢ ( 𝜑 → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
98 |
93 33 97
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 <s 𝐴 ) |
99 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
100 |
2 99
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
101 |
100
|
simp2d |
⊢ ( 𝜑 → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
103 |
|
ovex |
⊢ ( 𝑀 |s 𝑆 ) ∈ V |
104 |
103
|
snid |
⊢ ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } |
105 |
4 104
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
107 |
102 45 106
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 <s 𝐵 ) |
108 |
34 41 46 37 98 107
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑞 ) ) ) |
109 |
38 49
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
110 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
111 |
109 47 110
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) +s ( 𝐴 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ↔ ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑞 ) ) ) ) |
112 |
108 111
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) +s ( 𝐴 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
113 |
89 112
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
114 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑥 <s ( 𝐴 ·s 𝐵 ) ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ) ) |
115 |
113 114
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
116 |
115
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
117 |
61 68 70
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) ) |
118 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐿 <<s 𝑅 ) |
119 |
118 90
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
120 |
119
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
121 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
122 |
121 95
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
123 |
120 122 58
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 <s 𝑟 ) |
124 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑀 <<s 𝑆 ) |
125 |
124 99
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
126 |
125
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
127 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
128 |
127 104
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
129 |
126 128 66
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 <s 𝑠 ) |
130 |
62 59 60 67 123 129
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝑠 ) -s ( 𝐴 ·s 𝐵 ) ) <s ( ( 𝑟 ·s 𝑠 ) -s ( 𝑟 ·s 𝐵 ) ) ) |
131 |
61 70
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
132 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
133 |
131 68 132
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ↔ ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
134 |
61 70 132 68
|
sltsubsub2bd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑠 ) ) ↔ ( ( 𝐴 ·s 𝑠 ) -s ( 𝐴 ·s 𝐵 ) ) <s ( ( 𝑟 ·s 𝑠 ) -s ( 𝑟 ·s 𝐵 ) ) ) ) |
135 |
133 134
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ↔ ( ( 𝐴 ·s 𝑠 ) -s ( 𝐴 ·s 𝐵 ) ) <s ( ( 𝑟 ·s 𝑠 ) -s ( 𝑟 ·s 𝐵 ) ) ) ) |
136 |
130 135
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
137 |
117 136
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
138 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( 𝑥 <s ( 𝐴 ·s 𝐵 ) ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ) ) |
139 |
137 138
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
140 |
139
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
141 |
116 140
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
142 |
88 141
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
143 |
142
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) |
144 |
|
velsn |
⊢ ( 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } ↔ 𝑦 = ( 𝐴 ·s 𝐵 ) ) |
145 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐴 ·s 𝐵 ) → ( 𝑥 <s 𝑦 ↔ 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
146 |
144 145
|
sylbi |
⊢ ( 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } → ( 𝑥 <s 𝑦 ↔ 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
147 |
143 146
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) → ( 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } → 𝑥 <s 𝑦 ) ) |
148 |
147
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } ) → 𝑥 <s 𝑦 ) |
149 |
27 29 76 78 148
|
ssltd |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ) |