| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltmul1.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
| 2 |
|
ssltmul1.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
| 3 |
|
ssltmul1.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 4 |
|
ssltmul1.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 5 |
|
eqid |
⊢ ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 6 |
5
|
rnmpo |
⊢ ran ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } |
| 7 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 9 |
|
ssltex1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ∈ V ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 11 |
5
|
mpoexg |
⊢ ( ( 𝐿 ∈ V ∧ 𝑀 ∈ V ) → ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
| 13 |
|
rnexg |
⊢ ( ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V → ran ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ran ( 𝑝 ∈ 𝐿 , 𝑞 ∈ 𝑀 ↦ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ∈ V ) |
| 15 |
6 14
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∈ V ) |
| 16 |
|
eqid |
⊢ ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 17 |
16
|
rnmpo |
⊢ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) = { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } |
| 18 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
| 19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 20 |
|
ssltex2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ∈ V ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 22 |
16
|
mpoexg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
| 23 |
19 21 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
| 24 |
|
rnexg |
⊢ ( ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V → ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ∈ V ) |
| 26 |
17 25
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ∈ V ) |
| 27 |
15 26
|
unexd |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∈ V ) |
| 28 |
|
snex |
⊢ { ( 𝐴 ·s 𝐵 ) } ∈ V |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ∈ V ) |
| 30 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
| 31 |
1 30
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐿 ⊆ No ) |
| 33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ 𝐿 ) |
| 34 |
32 33
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ No ) |
| 35 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
| 36 |
4 35
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
| 38 |
34 37
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝐵 ) ∈ No ) |
| 39 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
| 40 |
3 39
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
| 42 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
| 43 |
2 42
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑀 ⊆ No ) |
| 45 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ 𝑀 ) |
| 46 |
44 45
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ No ) |
| 47 |
41 46
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑞 ) ∈ No ) |
| 48 |
38 47
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) ∈ No ) |
| 49 |
34 46
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑝 ·s 𝑞 ) ∈ No ) |
| 50 |
48 49
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
| 51 |
|
eleq1 |
⊢ ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑎 ∈ No ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) ) |
| 52 |
50 51
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑎 ∈ No ) ) |
| 53 |
52
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑎 ∈ No ) ) |
| 54 |
53
|
abssdv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ No ) |
| 55 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
| 56 |
1 55
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑅 ⊆ No ) |
| 58 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ 𝑅 ) |
| 59 |
57 58
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ No ) |
| 60 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
| 61 |
59 60
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝐵 ) ∈ No ) |
| 62 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
| 63 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
| 64 |
2 63
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑆 ⊆ No ) |
| 66 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ 𝑆 ) |
| 67 |
65 66
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ No ) |
| 68 |
62 67
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑠 ) ∈ No ) |
| 69 |
61 68
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) ∈ No ) |
| 70 |
59 67
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
| 71 |
69 70
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
| 72 |
|
eleq1 |
⊢ ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( 𝑏 ∈ No ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) ) |
| 73 |
71 72
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑏 ∈ No ) ) |
| 74 |
73
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑏 ∈ No ) ) |
| 75 |
74
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ No ) |
| 76 |
54 75
|
unssd |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ⊆ No ) |
| 77 |
40 36
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 78 |
77
|
snssd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ⊆ No ) |
| 79 |
|
elun |
⊢ ( 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( 𝑥 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) |
| 80 |
|
vex |
⊢ 𝑥 ∈ V |
| 81 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 82 |
81
|
2rexbidv |
⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 83 |
80 82
|
elab |
⊢ ( 𝑥 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 84 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 85 |
84
|
2rexbidv |
⊢ ( 𝑏 = 𝑥 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 86 |
80 85
|
elab |
⊢ ( 𝑥 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 87 |
83 86
|
orbi12i |
⊢ ( ( 𝑥 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∨ 𝑥 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 88 |
79 87
|
bitri |
⊢ ( 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ↔ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 89 |
38 47 49
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) +s ( 𝐴 ·s 𝑞 ) ) ) |
| 90 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 91 |
1 90
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 92 |
91
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 94 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
| 95 |
94
|
snid |
⊢ ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } |
| 96 |
3 95
|
eqeltrdi |
⊢ ( 𝜑 → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 98 |
93 33 97
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 <s 𝐴 ) |
| 99 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 100 |
2 99
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 101 |
100
|
simp2d |
⊢ ( 𝜑 → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
| 103 |
|
ovex |
⊢ ( 𝑀 |s 𝑆 ) ∈ V |
| 104 |
103
|
snid |
⊢ ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } |
| 105 |
4 104
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 107 |
102 45 106
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 <s 𝐵 ) |
| 108 |
34 41 46 37 98 107
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑞 ) ) ) |
| 109 |
38 49
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
| 110 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 111 |
109 47 110
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) +s ( 𝐴 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ↔ ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑞 ) ) ) ) |
| 112 |
108 111
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑞 ) ) +s ( 𝐴 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
| 113 |
89 112
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
| 114 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( 𝑥 <s ( 𝐴 ·s 𝐵 ) ↔ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) <s ( 𝐴 ·s 𝐵 ) ) ) |
| 115 |
113 114
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 116 |
115
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 117 |
61 68 70
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) ) |
| 118 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐿 <<s 𝑅 ) |
| 119 |
118 90
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 120 |
119
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 121 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 122 |
121 95
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 123 |
120 122 58
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 <s 𝑟 ) |
| 124 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑀 <<s 𝑆 ) |
| 125 |
124 99
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 126 |
125
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 127 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 128 |
127 104
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 129 |
126 128 66
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐵 <s 𝑠 ) |
| 130 |
62 59 60 67 123 129
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝐴 ·s 𝑠 ) -s ( 𝐴 ·s 𝐵 ) ) <s ( ( 𝑟 ·s 𝑠 ) -s ( 𝑟 ·s 𝐵 ) ) ) |
| 131 |
61 70
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
| 132 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 133 |
131 68 132
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ↔ ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑠 ) ) ) ) |
| 134 |
61 70 132 68
|
sltsubsub2bd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑠 ) ) ↔ ( ( 𝐴 ·s 𝑠 ) -s ( 𝐴 ·s 𝐵 ) ) <s ( ( 𝑟 ·s 𝑠 ) -s ( 𝑟 ·s 𝐵 ) ) ) ) |
| 135 |
133 134
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ↔ ( ( 𝐴 ·s 𝑠 ) -s ( 𝐴 ·s 𝐵 ) ) <s ( ( 𝑟 ·s 𝑠 ) -s ( 𝑟 ·s 𝐵 ) ) ) ) |
| 136 |
130 135
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑠 ) ) +s ( 𝐴 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
| 137 |
117 136
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ) |
| 138 |
|
breq1 |
⊢ ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( 𝑥 <s ( 𝐴 ·s 𝐵 ) ↔ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) <s ( 𝐴 ·s 𝐵 ) ) ) |
| 139 |
137 138
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 140 |
139
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 141 |
116 140
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑥 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∨ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑥 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 142 |
88 141
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 143 |
142
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) → 𝑥 <s ( 𝐴 ·s 𝐵 ) ) |
| 144 |
|
velsn |
⊢ ( 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } ↔ 𝑦 = ( 𝐴 ·s 𝐵 ) ) |
| 145 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐴 ·s 𝐵 ) → ( 𝑥 <s 𝑦 ↔ 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 146 |
144 145
|
sylbi |
⊢ ( 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } → ( 𝑥 <s 𝑦 ↔ 𝑥 <s ( 𝐴 ·s 𝐵 ) ) ) |
| 147 |
143 146
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ) → ( 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } → 𝑥 <s 𝑦 ) ) |
| 148 |
147
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ∧ 𝑦 ∈ { ( 𝐴 ·s 𝐵 ) } ) → 𝑥 <s 𝑦 ) |
| 149 |
27 29 76 78 148
|
ssltd |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ) |