Metamath Proof Explorer


Theorem ssltmul2

Description: One surreal set less-than relationship for cuts of A and B . (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses ssltmul2.1 ( 𝜑𝐿 <<s 𝑅 )
ssltmul2.2 ( 𝜑𝑀 <<s 𝑆 )
ssltmul2.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
ssltmul2.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
Assertion ssltmul2 ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) )

Proof

Step Hyp Ref Expression
1 ssltmul2.1 ( 𝜑𝐿 <<s 𝑅 )
2 ssltmul2.2 ( 𝜑𝑀 <<s 𝑆 )
3 ssltmul2.3 ( 𝜑𝐴 = ( 𝐿 |s 𝑅 ) )
4 ssltmul2.4 ( 𝜑𝐵 = ( 𝑀 |s 𝑆 ) )
5 snex { ( 𝐴 ·s 𝐵 ) } ∈ V
6 5 a1i ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ∈ V )
7 eqid ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) )
8 7 rnmpo ran ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) }
9 ssltex1 ( 𝐿 <<s 𝑅𝐿 ∈ V )
10 1 9 syl ( 𝜑𝐿 ∈ V )
11 ssltex2 ( 𝑀 <<s 𝑆𝑆 ∈ V )
12 2 11 syl ( 𝜑𝑆 ∈ V )
13 7 mpoexg ( ( 𝐿 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V )
14 10 12 13 syl2anc ( 𝜑 → ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V )
15 rnexg ( ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V → ran ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V )
16 14 15 syl ( 𝜑 → ran ( 𝑡𝐿 , 𝑢𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V )
17 8 16 eqeltrrid ( 𝜑 → { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∈ V )
18 eqid ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) )
19 18 rnmpo ran ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) }
20 ssltex2 ( 𝐿 <<s 𝑅𝑅 ∈ V )
21 1 20 syl ( 𝜑𝑅 ∈ V )
22 ssltex1 ( 𝑀 <<s 𝑆𝑀 ∈ V )
23 2 22 syl ( 𝜑𝑀 ∈ V )
24 18 mpoexg ( ( 𝑅 ∈ V ∧ 𝑀 ∈ V ) → ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V )
25 21 23 24 syl2anc ( 𝜑 → ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V )
26 rnexg ( ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V → ran ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V )
27 25 26 syl ( 𝜑 → ran ( 𝑣𝑅 , 𝑤𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V )
28 19 27 eqeltrrid ( 𝜑 → { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ∈ V )
29 17 28 unexd ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ∈ V )
30 1 scutcld ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No )
31 3 30 eqeltrd ( 𝜑𝐴 No )
32 2 scutcld ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No )
33 4 32 eqeltrd ( 𝜑𝐵 No )
34 31 33 mulscld ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No )
35 34 snssd ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ⊆ No )
36 ssltss1 ( 𝐿 <<s 𝑅𝐿 No )
37 1 36 syl ( 𝜑𝐿 No )
38 37 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐿 No )
39 simprl ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑡𝐿 )
40 38 39 sseldd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑡 No )
41 33 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐵 No )
42 40 41 mulscld ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝑡 ·s 𝐵 ) ∈ No )
43 31 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐴 No )
44 ssltss2 ( 𝑀 <<s 𝑆𝑆 No )
45 2 44 syl ( 𝜑𝑆 No )
46 45 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑆 No )
47 simprr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑢𝑆 )
48 46 47 sseldd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑢 No )
49 43 48 mulscld ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝐴 ·s 𝑢 ) ∈ No )
50 42 49 addscld ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No )
51 40 48 mulscld ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝑡 ·s 𝑢 ) ∈ No )
52 50 51 subscld ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No )
53 eleq1 ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝑐 No ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) )
54 52 53 syl5ibrcom ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑐 No ) )
55 54 rexlimdvva ( 𝜑 → ( ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑐 No ) )
56 55 abssdv ( 𝜑 → { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ No )
57 ssltss2 ( 𝐿 <<s 𝑅𝑅 No )
58 1 57 syl ( 𝜑𝑅 No )
59 58 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑅 No )
60 simprl ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑣𝑅 )
61 59 60 sseldd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑣 No )
62 33 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝐵 No )
63 61 62 mulscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝑣 ·s 𝐵 ) ∈ No )
64 31 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝐴 No )
65 ssltss1 ( 𝑀 <<s 𝑆𝑀 No )
66 2 65 syl ( 𝜑𝑀 No )
67 66 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑀 No )
68 simprr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑤𝑀 )
69 67 68 sseldd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑤 No )
70 64 69 mulscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝐴 ·s 𝑤 ) ∈ No )
71 63 70 addscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No )
72 61 69 mulscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝑣 ·s 𝑤 ) ∈ No )
73 71 72 subscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No )
74 eleq1 ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝑑 No ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) )
75 73 74 syl5ibrcom ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑑 No ) )
76 75 rexlimdvva ( 𝜑 → ( ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑑 No ) )
77 76 abssdv ( 𝜑 → { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ No )
78 56 77 unssd ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ⊆ No )
79 elun ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) )
80 vex 𝑦 ∈ V
81 eqeq1 ( 𝑐 = 𝑦 → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) )
82 81 2rexbidv ( 𝑐 = 𝑦 → ( ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡𝐿𝑢𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) )
83 80 82 elab ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ↔ ∃ 𝑡𝐿𝑢𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) )
84 eqeq1 ( 𝑑 = 𝑦 → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
85 84 2rexbidv ( 𝑑 = 𝑦 → ( ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣𝑅𝑤𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
86 80 85 elab ( 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ↔ ∃ 𝑣𝑅𝑤𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) )
87 83 86 orbi12i ( ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡𝐿𝑢𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣𝑅𝑤𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
88 79 87 bitri ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡𝐿𝑢𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣𝑅𝑤𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
89 scutcut ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) )
90 1 89 syl ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) )
91 90 simp2d ( 𝜑𝐿 <<s { ( 𝐿 |s 𝑅 ) } )
92 91 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } )
93 ovex ( 𝐿 |s 𝑅 ) ∈ V
94 93 snid ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) }
95 3 94 eqeltrdi ( 𝜑𝐴 ∈ { ( 𝐿 |s 𝑅 ) } )
96 95 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } )
97 92 39 96 ssltsepcd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝑡 <s 𝐴 )
98 scutcut ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) )
99 2 98 syl ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) )
100 99 simp3d ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 )
101 100 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 )
102 ovex ( 𝑀 |s 𝑆 ) ∈ V
103 102 snid ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) }
104 4 103 eqeltrdi ( 𝜑𝐵 ∈ { ( 𝑀 |s 𝑆 ) } )
105 104 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } )
106 101 105 47 ssltsepcd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → 𝐵 <s 𝑢 )
107 40 43 41 48 97 106 sltmuld ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) )
108 34 adantr ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No )
109 51 42 49 108 sltsubsub2bd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑢 ) ) <s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) )
110 42 51 subscld ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No )
111 108 49 110 sltsubaddd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑢 ) ) <s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) )
112 109 111 bitrd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) )
113 107 112 mpbid ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) )
114 42 49 51 addsubsd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) )
115 113 114 breqtrrd ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) )
116 breq2 ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( 𝐴 ·s 𝐵 ) <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) )
117 115 116 syl5ibrcom ( ( 𝜑 ∧ ( 𝑡𝐿𝑢𝑆 ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) )
118 117 rexlimdvva ( 𝜑 → ( ∃ 𝑡𝐿𝑢𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) )
119 90 simp3d ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 )
120 119 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 )
121 95 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } )
122 120 121 60 ssltsepcd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝐴 <s 𝑣 )
123 99 simp2d ( 𝜑𝑀 <<s { ( 𝑀 |s 𝑆 ) } )
124 123 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } )
125 104 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } )
126 124 68 125 ssltsepcd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → 𝑤 <s 𝐵 )
127 64 61 69 62 122 126 sltmuld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) <s ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) )
128 34 adantr ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No )
129 63 72 subscld ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No )
130 128 70 129 sltsubaddd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) <s ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) )
131 127 130 mpbid ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) )
132 63 70 72 addsubsd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) )
133 131 132 breqtrrd ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) )
134 breq2 ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( 𝐴 ·s 𝐵 ) <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) )
135 133 134 syl5ibrcom ( ( 𝜑 ∧ ( 𝑣𝑅𝑤𝑀 ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) )
136 135 rexlimdvva ( 𝜑 → ( ∃ 𝑣𝑅𝑤𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) )
137 118 136 jaod ( 𝜑 → ( ( ∃ 𝑡𝐿𝑢𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣𝑅𝑤𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) )
138 88 137 biimtrid ( 𝜑 → ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) )
139 velsn ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } ↔ 𝑥 = ( 𝐴 ·s 𝐵 ) )
140 breq1 ( 𝑥 = ( 𝐴 ·s 𝐵 ) → ( 𝑥 <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s 𝑦 ) )
141 140 imbi2d ( 𝑥 = ( 𝐴 ·s 𝐵 ) → ( ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ↔ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) )
142 139 141 sylbi ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } → ( ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ↔ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) )
143 138 142 syl5ibrcom ( 𝜑 → ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } → ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ) )
144 143 3imp ( ( 𝜑𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } ∧ 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) → 𝑥 <s 𝑦 )
145 6 29 35 78 144 ssltd ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡𝐿𝑢𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣𝑅𝑤𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) )