| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltmul2.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
| 2 |
|
ssltmul2.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
| 3 |
|
ssltmul2.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 4 |
|
ssltmul2.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 5 |
|
snex |
⊢ { ( 𝐴 ·s 𝐵 ) } ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ∈ V ) |
| 7 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 8 |
7
|
rnmpo |
⊢ ran ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } |
| 9 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 11 |
|
ssltex2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ∈ V ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 13 |
7
|
mpoexg |
⊢ ( ( 𝐿 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
| 14 |
10 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
| 15 |
|
rnexg |
⊢ ( ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V → ran ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ran ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
| 17 |
8 16
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∈ V ) |
| 18 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 19 |
18
|
rnmpo |
⊢ ran ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } |
| 20 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 22 |
|
ssltex1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ∈ V ) |
| 23 |
2 22
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 24 |
18
|
mpoexg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ V ) → ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
| 25 |
21 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
| 26 |
|
rnexg |
⊢ ( ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V → ran ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ran ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
| 28 |
19 27
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ∈ V ) |
| 29 |
17 28
|
unexd |
⊢ ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ∈ V ) |
| 30 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
| 31 |
3 30
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 32 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
| 33 |
4 32
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 34 |
31 33
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 35 |
34
|
snssd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ⊆ No ) |
| 36 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
| 37 |
1 36
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐿 ⊆ No ) |
| 39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ 𝐿 ) |
| 40 |
38 39
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ No ) |
| 41 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
| 42 |
40 41
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝐵 ) ∈ No ) |
| 43 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
| 44 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
| 45 |
2 44
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑆 ⊆ No ) |
| 47 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) |
| 48 |
46 47
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ No ) |
| 49 |
43 48
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑢 ) ∈ No ) |
| 50 |
42 49
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No ) |
| 51 |
40 48
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝑢 ) ∈ No ) |
| 52 |
50 51
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
| 53 |
|
eleq1 |
⊢ ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝑐 ∈ No ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) ) |
| 54 |
52 53
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑐 ∈ No ) ) |
| 55 |
54
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑐 ∈ No ) ) |
| 56 |
55
|
abssdv |
⊢ ( 𝜑 → { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ No ) |
| 57 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
| 58 |
1 57
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑅 ⊆ No ) |
| 60 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ 𝑅 ) |
| 61 |
59 60
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ No ) |
| 62 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
| 63 |
61 62
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
| 64 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
| 65 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
| 66 |
2 65
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑀 ⊆ No ) |
| 68 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ 𝑀 ) |
| 69 |
67 68
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ No ) |
| 70 |
64 69
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
| 71 |
63 70
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) |
| 72 |
61 69
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
| 73 |
71 72
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
| 74 |
|
eleq1 |
⊢ ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝑑 ∈ No ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) ) |
| 75 |
73 74
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑑 ∈ No ) ) |
| 76 |
75
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑑 ∈ No ) ) |
| 77 |
76
|
abssdv |
⊢ ( 𝜑 → { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ No ) |
| 78 |
56 77
|
unssd |
⊢ ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ⊆ No ) |
| 79 |
|
elun |
⊢ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |
| 80 |
|
vex |
⊢ 𝑦 ∈ V |
| 81 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑦 → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 82 |
81
|
2rexbidv |
⊢ ( 𝑐 = 𝑦 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 83 |
80 82
|
elab |
⊢ ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 84 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑦 → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 85 |
84
|
2rexbidv |
⊢ ( 𝑑 = 𝑦 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 86 |
80 85
|
elab |
⊢ ( 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 87 |
83 86
|
orbi12i |
⊢ ( ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 88 |
79 87
|
bitri |
⊢ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 89 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 90 |
1 89
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 91 |
90
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 93 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
| 94 |
93
|
snid |
⊢ ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } |
| 95 |
3 94
|
eqeltrdi |
⊢ ( 𝜑 → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 97 |
92 39 96
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 <s 𝐴 ) |
| 98 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 99 |
2 98
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 100 |
99
|
simp3d |
⊢ ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 102 |
|
ovex |
⊢ ( 𝑀 |s 𝑆 ) ∈ V |
| 103 |
102
|
snid |
⊢ ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } |
| 104 |
4 103
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 106 |
101 105 47
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 <s 𝑢 ) |
| 107 |
40 43 41 48 97 106
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
| 108 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 109 |
51 42 49 108
|
sltsubsub2bd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑢 ) ) <s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 110 |
42 51
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
| 111 |
108 49 110
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑢 ) ) <s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) ) |
| 112 |
109 111
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) ) |
| 113 |
107 112
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
| 114 |
42 49 51
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
| 115 |
113 114
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
| 116 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( 𝐴 ·s 𝐵 ) <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 117 |
115 116
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
| 118 |
117
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
| 119 |
90
|
simp3d |
⊢ ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 121 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 122 |
120 121 60
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 <s 𝑣 ) |
| 123 |
99
|
simp2d |
⊢ ( 𝜑 → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
| 125 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 126 |
124 68 125
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 <s 𝐵 ) |
| 127 |
64 61 69 62 122 126
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) <s ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 128 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 129 |
63 72
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
| 130 |
128 70 129
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) <s ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) ) |
| 131 |
127 130
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
| 132 |
63 70 72
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
| 133 |
131 132
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
| 134 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( 𝐴 ·s 𝐵 ) <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 135 |
133 134
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
| 136 |
135
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
| 137 |
118 136
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
| 138 |
88 137
|
biimtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
| 139 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } ↔ 𝑥 = ( 𝐴 ·s 𝐵 ) ) |
| 140 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 ·s 𝐵 ) → ( 𝑥 <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
| 141 |
140
|
imbi2d |
⊢ ( 𝑥 = ( 𝐴 ·s 𝐵 ) → ( ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ↔ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) ) |
| 142 |
139 141
|
sylbi |
⊢ ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } → ( ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ↔ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) ) |
| 143 |
138 142
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } → ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ) ) |
| 144 |
143
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } ∧ 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) → 𝑥 <s 𝑦 ) |
| 145 |
6 29 35 78 144
|
ssltd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |