Step |
Hyp |
Ref |
Expression |
1 |
|
ssltmul2.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
ssltmul2.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
3 |
|
ssltmul2.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
4 |
|
ssltmul2.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
5 |
|
snex |
⊢ { ( 𝐴 ·s 𝐵 ) } ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ∈ V ) |
7 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
8 |
7
|
rnmpo |
⊢ ran ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) = { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } |
9 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
11 |
|
ssltex2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ∈ V ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
13 |
7
|
mpoexg |
⊢ ( ( 𝐿 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
14 |
10 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
15 |
|
rnexg |
⊢ ( ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V → ran ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ran ( 𝑡 ∈ 𝐿 , 𝑢 ∈ 𝑆 ↦ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ∈ V ) |
17 |
8 16
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∈ V ) |
18 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
19 |
18
|
rnmpo |
⊢ ran ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) = { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } |
20 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
22 |
|
ssltex1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ∈ V ) |
23 |
2 22
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
24 |
18
|
mpoexg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ V ) → ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
25 |
21 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
26 |
|
rnexg |
⊢ ( ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V → ran ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → ran ( 𝑣 ∈ 𝑅 , 𝑤 ∈ 𝑀 ↦ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ∈ V ) |
28 |
19 27
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ∈ V ) |
29 |
17 28
|
unexd |
⊢ ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ∈ V ) |
30 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
31 |
3 30
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
32 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
33 |
4 32
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
34 |
31 33
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
35 |
34
|
snssd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } ⊆ No ) |
36 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
37 |
1 36
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐿 ⊆ No ) |
39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ 𝐿 ) |
40 |
38 39
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ No ) |
41 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
42 |
40 41
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝐵 ) ∈ No ) |
43 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
44 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
45 |
2 44
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑆 ⊆ No ) |
47 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) |
48 |
46 47
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ No ) |
49 |
43 48
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝑢 ) ∈ No ) |
50 |
42 49
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No ) |
51 |
40 48
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑡 ·s 𝑢 ) ∈ No ) |
52 |
50 51
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
53 |
|
eleq1 |
⊢ ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝑐 ∈ No ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) ) |
54 |
52 53
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑐 ∈ No ) ) |
55 |
54
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → 𝑐 ∈ No ) ) |
56 |
55
|
abssdv |
⊢ ( 𝜑 → { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ No ) |
57 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
58 |
1 57
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑅 ⊆ No ) |
60 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ 𝑅 ) |
61 |
59 60
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ No ) |
62 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
63 |
61 62
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
64 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
65 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
66 |
2 65
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑀 ⊆ No ) |
68 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ 𝑀 ) |
69 |
67 68
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ No ) |
70 |
64 69
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
71 |
63 70
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) |
72 |
61 69
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
73 |
71 72
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
74 |
|
eleq1 |
⊢ ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝑑 ∈ No ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) ) |
75 |
73 74
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑑 ∈ No ) ) |
76 |
75
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → 𝑑 ∈ No ) ) |
77 |
76
|
abssdv |
⊢ ( 𝜑 → { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ No ) |
78 |
56 77
|
unssd |
⊢ ( 𝜑 → ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ⊆ No ) |
79 |
|
elun |
⊢ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |
80 |
|
vex |
⊢ 𝑦 ∈ V |
81 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑦 → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
82 |
81
|
2rexbidv |
⊢ ( 𝑐 = 𝑦 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
83 |
80 82
|
elab |
⊢ ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
84 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑦 → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
85 |
84
|
2rexbidv |
⊢ ( 𝑑 = 𝑦 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
86 |
80 85
|
elab |
⊢ ( 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
87 |
83 86
|
orbi12i |
⊢ ( ( 𝑦 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∨ 𝑦 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
88 |
79 87
|
bitri |
⊢ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
89 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
90 |
1 89
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
91 |
90
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
93 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
94 |
93
|
snid |
⊢ ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } |
95 |
3 94
|
eqeltrdi |
⊢ ( 𝜑 → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
97 |
92 39 96
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 <s 𝐴 ) |
98 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
99 |
2 98
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
100 |
99
|
simp3d |
⊢ ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
102 |
|
ovex |
⊢ ( 𝑀 |s 𝑆 ) ∈ V |
103 |
102
|
snid |
⊢ ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } |
104 |
4 103
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
106 |
101 105 47
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 <s 𝑢 ) |
107 |
40 43 41 48 97 106
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
108 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
109 |
51 42 49 108
|
sltsubsub2bd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑢 ) ) <s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
110 |
42 51
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
111 |
108 49 110
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑢 ) ) <s ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) ) |
112 |
109 111
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) <s ( ( 𝐴 ·s 𝑢 ) -s ( 𝐴 ·s 𝐵 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) ) |
113 |
107 112
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
114 |
42 49 51
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
115 |
113 114
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) |
116 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( ( 𝐴 ·s 𝐵 ) <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
117 |
115 116
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
118 |
117
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
119 |
90
|
simp3d |
⊢ ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
121 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
122 |
120 121 60
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 <s 𝑣 ) |
123 |
99
|
simp2d |
⊢ ( 𝜑 → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
125 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
126 |
124 68 125
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 <s 𝐵 ) |
127 |
64 61 69 62 122 126
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) <s ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ) |
128 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
129 |
63 72
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
130 |
128 70 129
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝑤 ) ) <s ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) ) |
131 |
127 130
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
132 |
63 70 72
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑤 ) ) +s ( 𝐴 ·s 𝑤 ) ) ) |
133 |
131 132
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) |
134 |
|
breq2 |
⊢ ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( ( 𝐴 ·s 𝐵 ) <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
135 |
133 134
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
136 |
135
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
137 |
118 136
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑦 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∨ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑦 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
138 |
88 137
|
biimtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
139 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } ↔ 𝑥 = ( 𝐴 ·s 𝐵 ) ) |
140 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 ·s 𝐵 ) → ( 𝑥 <s 𝑦 ↔ ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) |
141 |
140
|
imbi2d |
⊢ ( 𝑥 = ( 𝐴 ·s 𝐵 ) → ( ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ↔ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) ) |
142 |
139 141
|
sylbi |
⊢ ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } → ( ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ↔ ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( 𝐴 ·s 𝐵 ) <s 𝑦 ) ) ) |
143 |
138 142
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } → ( 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → 𝑥 <s 𝑦 ) ) ) |
144 |
143
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ( 𝐴 ·s 𝐵 ) } ∧ 𝑦 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) → 𝑥 <s 𝑦 ) |
145 |
6 29 35 78 144
|
ssltd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |