| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 2 |
1
|
a1i |
⊢ ( 𝐴 ∈ No → { 𝐴 } ∈ V ) |
| 3 |
|
fvexd |
⊢ ( 𝐴 ∈ No → ( R ‘ 𝐴 ) ∈ V ) |
| 4 |
|
snssi |
⊢ ( 𝐴 ∈ No → { 𝐴 } ⊆ No ) |
| 5 |
|
rightf |
⊢ R : No ⟶ 𝒫 No |
| 6 |
5
|
ffvelcdmi |
⊢ ( 𝐴 ∈ No → ( R ‘ 𝐴 ) ∈ 𝒫 No ) |
| 7 |
6
|
elpwid |
⊢ ( 𝐴 ∈ No → ( R ‘ 𝐴 ) ⊆ No ) |
| 8 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
| 9 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑦 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑦 } |
| 10 |
9
|
a1i |
⊢ ( 𝐴 ∈ No → ( R ‘ 𝐴 ) = { 𝑦 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑦 } ) |
| 11 |
10
|
eleq2d |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( R ‘ 𝐴 ) ↔ 𝑦 ∈ { 𝑦 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑦 } ) ) |
| 12 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑦 } ↔ ( 𝑦 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑦 ) ) |
| 13 |
11 12
|
bitrdi |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑦 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑦 ) ) ) |
| 14 |
13
|
simplbda |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘ 𝐴 ) ) → 𝐴 <s 𝑦 ) |
| 15 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦 ) ) |
| 16 |
14 15
|
imbitrrid |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘ 𝐴 ) ) → 𝑥 <s 𝑦 ) ) |
| 17 |
16
|
expd |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∈ No → ( 𝑦 ∈ ( R ‘ 𝐴 ) → 𝑥 <s 𝑦 ) ) ) |
| 18 |
8 17
|
sylbi |
⊢ ( 𝑥 ∈ { 𝐴 } → ( 𝐴 ∈ No → ( 𝑦 ∈ ( R ‘ 𝐴 ) → 𝑥 <s 𝑦 ) ) ) |
| 19 |
18
|
3imp21 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ ( R ‘ 𝐴 ) ) → 𝑥 <s 𝑦 ) |
| 20 |
2 3 4 7 19
|
ssltd |
⊢ ( 𝐴 ∈ No → { 𝐴 } <<s ( R ‘ 𝐴 ) ) |