| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltsn.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
ssltsn.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
ssltsn.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
| 4 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → { 𝐴 } ∈ V ) |
| 6 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → { 𝐵 } ∈ V ) |
| 8 |
1
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ No ) |
| 9 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ No ) |
| 10 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
| 11 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝐵 } ↔ 𝑦 = 𝐵 ) |
| 12 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵 ) ) |
| 13 |
10 11 12
|
syl2anb |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐵 } ) → ( 𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵 ) ) |
| 14 |
3 13
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐵 } ) → 𝑥 <s 𝑦 ) ) |
| 15 |
14
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐵 } ) → 𝑥 <s 𝑦 ) |
| 16 |
5 7 8 9 15
|
ssltd |
⊢ ( 𝜑 → { 𝐴 } <<s { 𝐵 } ) |