Metamath Proof Explorer


Theorem ssltsn

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses ssltsn.1 ( 𝜑𝐴 No )
ssltsn.2 ( 𝜑𝐵 No )
ssltsn.3 ( 𝜑𝐴 <s 𝐵 )
Assertion ssltsn ( 𝜑 → { 𝐴 } <<s { 𝐵 } )

Proof

Step Hyp Ref Expression
1 ssltsn.1 ( 𝜑𝐴 No )
2 ssltsn.2 ( 𝜑𝐵 No )
3 ssltsn.3 ( 𝜑𝐴 <s 𝐵 )
4 snex { 𝐴 } ∈ V
5 4 a1i ( 𝜑 → { 𝐴 } ∈ V )
6 snex { 𝐵 } ∈ V
7 6 a1i ( 𝜑 → { 𝐵 } ∈ V )
8 1 snssd ( 𝜑 → { 𝐴 } ⊆ No )
9 2 snssd ( 𝜑 → { 𝐵 } ⊆ No )
10 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
11 velsn ( 𝑦 ∈ { 𝐵 } ↔ 𝑦 = 𝐵 )
12 breq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥 <s 𝑦𝐴 <s 𝐵 ) )
13 10 11 12 syl2anb ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐵 } ) → ( 𝑥 <s 𝑦𝐴 <s 𝐵 ) )
14 3 13 syl5ibrcom ( 𝜑 → ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐵 } ) → 𝑥 <s 𝑦 ) )
15 14 3impib ( ( 𝜑𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐵 } ) → 𝑥 <s 𝑦 )
16 5 7 8 9 15 ssltd ( 𝜑 → { 𝐴 } <<s { 𝐵 } )