Step |
Hyp |
Ref |
Expression |
1 |
|
ssmapsn.f |
⊢ Ⅎ 𝑓 𝐷 |
2 |
|
ssmapsn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
ssmapsn.c |
⊢ ( 𝜑 → 𝐶 ⊆ ( 𝐵 ↑m { 𝐴 } ) ) |
4 |
|
ssmapsn.d |
⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 |
5 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → 𝑓 ∈ ( 𝐵 ↑m { 𝐴 } ) ) |
6 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m { 𝐴 } ) → 𝑓 : { 𝐴 } ⟶ 𝐵 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → 𝑓 : { 𝐴 } ⟶ 𝐵 ) |
8 |
7
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → 𝑓 Fn { 𝐴 } ) |
9 |
4
|
a1i |
⊢ ( 𝜑 → 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 ) |
10 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐵 ↑m { 𝐴 } ) ∈ V ) |
11 |
10 3
|
ssexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
12 |
|
rnexg |
⊢ ( 𝑓 ∈ 𝐶 → ran 𝑓 ∈ V ) |
13 |
12
|
rgen |
⊢ ∀ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V ) |
15 |
11 14
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ V ∧ ∀ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V ) ) |
16 |
|
iunexg |
⊢ ( ( 𝐶 ∈ V ∧ ∀ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V ) → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V ) |
18 |
9 17
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → 𝐷 ∈ V ) |
20 |
|
ssiun2 |
⊢ ( 𝑓 ∈ 𝐶 → ran 𝑓 ⊆ ∪ 𝑓 ∈ 𝐶 ran 𝑓 ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → ran 𝑓 ⊆ ∪ 𝑓 ∈ 𝐶 ran 𝑓 ) |
22 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
23 |
2 22
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → 𝐴 ∈ { 𝐴 } ) |
25 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn { 𝐴 } ∧ 𝐴 ∈ { 𝐴 } ) → ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑓 ) |
26 |
8 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑓 ) |
27 |
21 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → ( 𝑓 ‘ 𝐴 ) ∈ ∪ 𝑓 ∈ 𝐶 ran 𝑓 ) |
28 |
27 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ) |
29 |
8 19 28
|
elmapsnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐶 ) → 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) |
30 |
29
|
ex |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐶 → 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ) |
31 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → 𝐷 ∈ V ) |
32 |
|
snex |
⊢ { 𝐴 } ∈ V |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → { 𝐴 } ∈ V ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) |
35 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → 𝐴 ∈ { 𝐴 } ) |
36 |
31 33 34 35
|
fvmap |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ) |
37 |
4
|
idi |
⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 |
38 |
|
rneq |
⊢ ( 𝑓 = 𝑔 → ran 𝑓 = ran 𝑔 ) |
39 |
38
|
cbviunv |
⊢ ∪ 𝑓 ∈ 𝐶 ran 𝑓 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
40 |
37 39
|
eqtri |
⊢ 𝐷 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
41 |
36 40
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ∪ 𝑔 ∈ 𝐶 ran 𝑔 ) |
42 |
|
eliun |
⊢ ( ( 𝑓 ‘ 𝐴 ) ∈ ∪ 𝑔 ∈ 𝐶 ran 𝑔 ↔ ∃ 𝑔 ∈ 𝐶 ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) |
43 |
41 42
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → ∃ 𝑔 ∈ 𝐶 ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) |
44 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) |
45 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝜑 ) |
46 |
45 2
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝐴 ∈ 𝑉 ) |
47 |
|
eqid |
⊢ { 𝐴 } = { 𝐴 } |
48 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) |
49 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) → 𝑓 Fn { 𝐴 } ) |
50 |
48 49
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝑓 Fn { 𝐴 } ) |
51 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝑔 ∈ ( 𝐵 ↑m { 𝐴 } ) ) |
52 |
|
elmapfn |
⊢ ( 𝑔 ∈ ( 𝐵 ↑m { 𝐴 } ) → 𝑔 Fn { 𝐴 } ) |
53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝑔 Fn { 𝐴 } ) |
54 |
53
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝑔 Fn { 𝐴 } ) |
55 |
54
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝑔 Fn { 𝐴 } ) |
56 |
46 47 50 55
|
fsneqrn |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → ( 𝑓 = 𝑔 ↔ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) ) |
57 |
44 56
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝑓 = 𝑔 ) |
58 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝑔 ∈ 𝐶 ) |
59 |
57 58
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ∧ 𝑔 ∈ 𝐶 ∧ ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 ) → 𝑓 ∈ 𝐶 ) |
60 |
59
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → ( 𝑔 ∈ 𝐶 → ( ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 → 𝑓 ∈ 𝐶 ) ) ) |
61 |
60
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → ( ∃ 𝑔 ∈ 𝐶 ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑔 → 𝑓 ∈ 𝐶 ) ) |
62 |
43 61
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) → 𝑓 ∈ 𝐶 ) |
63 |
62
|
ex |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) → 𝑓 ∈ 𝐶 ) ) |
64 |
30 63
|
impbid |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐶 ↔ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ) |
65 |
64
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑓 ( 𝑓 ∈ 𝐶 ↔ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ) |
66 |
|
nfcv |
⊢ Ⅎ 𝑓 𝐶 |
67 |
|
nfcv |
⊢ Ⅎ 𝑓 ↑m |
68 |
|
nfcv |
⊢ Ⅎ 𝑓 { 𝐴 } |
69 |
1 67 68
|
nfov |
⊢ Ⅎ 𝑓 ( 𝐷 ↑m { 𝐴 } ) |
70 |
66 69
|
cleqf |
⊢ ( 𝐶 = ( 𝐷 ↑m { 𝐴 } ) ↔ ∀ 𝑓 ( 𝑓 ∈ 𝐶 ↔ 𝑓 ∈ ( 𝐷 ↑m { 𝐴 } ) ) ) |
71 |
65 70
|
sylibr |
⊢ ( 𝜑 → 𝐶 = ( 𝐷 ↑m { 𝐴 } ) ) |