Step |
Hyp |
Ref |
Expression |
1 |
|
inss1 |
⊢ ( ( 𝑥 ∨ℋ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ∨ℋ 𝐴 ) |
2 |
|
dfss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
3 |
2
|
biimpi |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∨ℋ 𝐴 ) = ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
5 |
1 4
|
sseqtrid |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∨ℋ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
6 |
5
|
a1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ⊆ 𝐵 → ( ( 𝑥 ∨ℋ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) ) |
7 |
6
|
ralrimivw |
⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐵 → ( ( 𝑥 ∨ℋ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) ) |
8 |
|
mdbr2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ 𝐵 ↔ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐵 → ( ( 𝑥 ∨ℋ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
9 |
7 8
|
syl5ibr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ 𝐵 ) ) |
10 |
9
|
3impia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) |