Metamath Proof Explorer


Theorem ssmd1

Description: Ordering implies the modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssmd1 ( ( 𝐴C𝐵C𝐴𝐵 ) → 𝐴 𝑀 𝐵 )

Proof

Step Hyp Ref Expression
1 inss1 ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 𝐴 )
2 dfss ( 𝐴𝐵𝐴 = ( 𝐴𝐵 ) )
3 2 biimpi ( 𝐴𝐵𝐴 = ( 𝐴𝐵 ) )
4 3 oveq2d ( 𝐴𝐵 → ( 𝑥 𝐴 ) = ( 𝑥 ( 𝐴𝐵 ) ) )
5 1 4 sseqtrid ( 𝐴𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) )
6 5 a1d ( 𝐴𝐵 → ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ) )
7 6 ralrimivw ( 𝐴𝐵 → ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ) )
8 mdbr2 ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( 𝑥𝐵 → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
9 7 8 syl5ibr ( ( 𝐴C𝐵C ) → ( 𝐴𝐵𝐴 𝑀 𝐵 ) )
10 9 3impia ( ( 𝐴C𝐵C𝐴𝐵 ) → 𝐴 𝑀 𝐵 )