Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
⊢ ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ 𝐴 |
2 |
|
chub2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → 𝐴 ⊆ ( 𝑥 ∨ℋ 𝐴 ) ) |
3 |
1 2
|
sstrid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ 𝐴 ) ) |
4 |
3
|
adantrl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ 𝐴 ) ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) → 𝐴 ⊆ 𝐵 ) |
6 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) → ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) ) → ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) ) → ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) = ( 𝑥 ∨ℋ 𝐴 ) ) |
10 |
4 9
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) ) → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) |
11 |
10
|
a1d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) ) → ( 𝑥 ⊆ 𝐴 → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) |
12 |
11
|
exp32 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ Cℋ → ( 𝑥 ⊆ 𝐴 → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) ) ) |
13 |
12
|
ralrimdv |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
15 |
|
mdbr2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 𝑀ℋ 𝐴 ↔ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
16 |
15
|
ancoms |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 𝑀ℋ 𝐴 ↔ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( ( 𝑥 ∨ℋ 𝐵 ) ∩ 𝐴 ) ⊆ ( 𝑥 ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) ) ) |
17 |
14 16
|
sylibrd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → 𝐵 𝑀ℋ 𝐴 ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 𝑀ℋ 𝐴 ) |