Metamath Proof Explorer


Theorem ssmin

Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006)

Ref Expression
Assertion ssmin 𝐴 { 𝑥 ∣ ( 𝐴𝑥𝜑 ) }

Proof

Step Hyp Ref Expression
1 ssintab ( 𝐴 { 𝑥 ∣ ( 𝐴𝑥𝜑 ) } ↔ ∀ 𝑥 ( ( 𝐴𝑥𝜑 ) → 𝐴𝑥 ) )
2 simpl ( ( 𝐴𝑥𝜑 ) → 𝐴𝑥 )
3 1 2 mpgbir 𝐴 { 𝑥 ∣ ( 𝐴𝑥𝜑 ) }