Metamath Proof Explorer


Theorem ssn0

Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007)

Ref Expression
Assertion ssn0 ( ( 𝐴𝐵𝐴 ≠ ∅ ) → 𝐵 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 sseq0 ( ( 𝐴𝐵𝐵 = ∅ ) → 𝐴 = ∅ )
2 1 ex ( 𝐴𝐵 → ( 𝐵 = ∅ → 𝐴 = ∅ ) )
3 2 necon3d ( 𝐴𝐵 → ( 𝐴 ≠ ∅ → 𝐵 ≠ ∅ ) )
4 3 imp ( ( 𝐴𝐵𝐴 ≠ ∅ ) → 𝐵 ≠ ∅ )