Description: There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ssn0rex | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ) ) | |
2 | n0rex | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 ) | |
3 | 1 2 | impel | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ) |